DETERMINATION OF GROUNDWATER RISK CONTROL VALUE OF A POLLUTED LAND BASED ON NUMERICAL SIMULATION
-
摘要: 针对地下水风险管控目标值确定较难的问题,以某废弃铁合金厂为研究对象,讨论地下水中Cr (Ⅵ)污染对下游敏感目标河流的环境影响,采用数值模拟方法,确定水力截获条件下该污染区地下水风险管控目标值。结果表明:天然条件下,2500 d后,Cr (Ⅵ)浓度>0.5 mg/L的污染羽将迁移至河流处;在水力截获条件下,当水力截获Cr (Ⅵ)浓度为10 mg/L以上的污染羽范围时,排泄至河流处Cr (Ⅵ)最高浓度为0.46 mg/L,可达到地下水风险管控的目的。最终确定本场地地下水风险管控值为10 mg/L,使地下水风险管控的面积减少了约9.45万m2,节约了污水处理的成本。该成果可为地下水风险管控目标值的确定提供方法支撑,为我国污染地块地下水修复方案编制提供设计支撑。
-
关键词:
- GMS /
- 水力截获 /
- 地下水修复目标值 /
- 地下水风险管控目标值
Abstract: Aiming at the difficult problems of determining the target value of groundwater risk management and control, this article took an abandoned ferroalloy plant as the research object, and discussed the environmental impact of hexavalent chromium pollution in groundwater on the downstream sensitive target rivers. Numerical simulation methods were used to determine the pollution under hydraulic interception conditions, the target value of groundwater risk management and control of the plot. The results showed that:under natural conditions, after 2500 days, the pollution plume with hexavalent chromium concentration greater than 0.5 mg/L will migrate to the river; under hydraulic interception condition, when the hydraulic interception of the hexavalent chromium concentration was above 10 mg/L of the pollution plume, the highest concentration of hexavalent chromium discharged to the river was 0.46 mg/L, achieving the purpose of groundwater risk management and control. It's finally determined that the groundwater risk control value of this site was 10 mg/L, which reduced the area of groundwater risk control by about 9.45 m2 and saved the cost of sewage treatment. This study provides support for determining the target value of groundwater risk management and control, and preparation of groundwater remediation plans for contaminated land in China. -
[1] 靳超,左锐,王金生,等.傍河污染场地地下水修复技术筛选[J].北京师范大学学报(自然科学版),2017,53(6):689-697. [2] 罗思东.美国城市的棕色地块及其治理[J].城市问题,2002(6):64-67. [3] EELL A, ANDERSSON-SKOLD Y, VESTIN J, et al. Risk management and regeneration of brown fields using bioenergy crops[J]. Journal of Soil & Sediments,2016,16(3):987-1000. [4] 陈梦舫.我国工业污染场地土壤与地下水重金属修复技术综述[J].中国科学院院刊,2014,29(3):327-335. [5] 李元杰,任婷,张雪,等.污染场地基于风险管控下的管理与修复方法研究[C]//2017中国环境科学学会科学与技术年会,中国福建厦门,2017. [6] 中华人民共和国生态环境部.污染地块地下水修复和风险管控技术导则:HJ 25.6-2019[S].北京:中国标准出版社,2019. [7] 谢雨呈,谭长银,张朝,等.典型肥料生产场地氨氮分布特征及风险控制目标确定[J].环境科学研究,2019,32(3):465-474. [8] 牛浩博.氯代烃污染场地地下水抽出-处理方案优化:以山东某小化工厂污染场地为例[D].北京:中国地质大学,2018. [9] EPAUS. Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites[S]. Washington DC:U.S.EPA, Office of Solid Waste and Emergency Response,1999. [10] 吴玉成.治理地下水有机污染抽出处理技术影响因素分析[J].水文地质工程地质,1998,25(1):30-32. [11] 郭华明,王焰新.地下水有机污染治理技术现状及发展前景[J].地质科技情报,1999,18(2):70-73. [12] 徐绍辉,朱学愚.地下水石油污染治理的水力截获技术及数值模拟[J].水利学报,1999(1):71-76. [13] GORELICK S M, VOSS C I, GILL P E, et al. Aquifer reclamation design:the use of contaminant transport simulation combined with nonlinear programing[J].Water Resources Research,1984,20(4):415-427. [14] TRAVIS C, DOTY C.Can contaminated aquifers at superfund sites be remediated[J].Environmental Science & Technology,1990,24(10):1464-1466. [15] TAGUCHI T, YOKOTA T, GEN M. Reliability optimal design problem with interval coefficients using Hybrid Genetic Algorithms[J].Computers & Industrial Engineering,1998,35(1/2):373-376. [16] 肖再亮,王飞,洒永芳,等.基于数值模拟的某临河工业固体废物渣场地下水污染控制研究[J].水资源与水工程学报,2019,30(2):95-99. [17] JAVANDEL I, TSANG C. Capture-zone type curves:a tool for aquifer cleanup[J].Ground Water,2010,24(5):616-625. [18] 张人权,梁杏,靳孟贵,等.水文地质学基础[M]. 6版.北京:地质出版社,2011. [19] 张佳.某铬污染场地原位淋洗水力截获修复数值模拟研究[D].北京:中国地质大学(北京),2015. [20] 郇环,王金生.水力截获技术研究进展[J].环境污染与防治,2011,33(3):83-87. [21] 宫志强,陈坚,杨鑫鑫,等.某铬污染场地地下水抽水方案优化[J].环境工程,2019,37(5):1-3. [22] 宫志强,刘明柱,刘伟江,等.单井捕获地下水污染羽优化方法[J].环境工程学报,2019,13(10):2468-2474.
点击查看大图
计量
- 文章访问数: 145
- HTML全文浏览量: 39
- PDF下载量: 6
- 被引次数: 0