R&D AND PERFORMANCE ANALYSIS OF A PHOTOTHERMAL AND PHOTOELECTRIC SOLAR DESALINATION DEVICE FOR ISLANDS
-
摘要: 针对偏远海岛淡水资源和常规能源缺乏问题,综合利用光热与光伏驱动,通过技术设计、数学计算、传热传质、模拟测试、性能分析等程序研制一种适用于海岛的太阳能海水淡化装置。并在光热模式、光热光伏模式、电加热模式下测试了装置的性能。实验结果表明:1)淡化装置在光热模式下的平均产水速率为225 mL/h,在光热光伏模式下的平均产水速率为332 mL/h,比光热模式提高了47.6%,而电加热模式平均产水速率可达到1910 mL/h,反映了中高温太阳能集热管的重要性;2)淡化装置的最佳实验条件为:蒸发舱温度为103℃,冷却水温度为41℃,环境温度为30℃,在此条件下的瞬时产水量高达2389 mL/h,各因素的影响程度顺序为蒸发舱温度>冷却水温度>环境温度;3)淡化装置在光热和光热光伏模式下的单位面积产水量分别为2172,1167 mL/(m2·d),太阳能蒸馏过程的最小热耗为2.03 kW·h/m3。Abstract: Given the shortage of freshwater resources and conventional energy resources in remote islands, it is practical to research and develop a solar desalination device for islands. In this paper, a new seawater desalination device was developed through a procedure of technical design, mathematical calculation, heat and mass transfer, simulation test and performance analysis, etc. And its performance was tested under three working modes, photothermal mode, photothermal photovoltaic mode, and electric heating mode. The experimental results showed that:1) the water production rate of the desalination device was 225 mL/h in photothermal mode, 332 mL/h in photothermal photovoltaic mode (47.6% higher than that of photothermal mode), and 1910 mL/h in electric heating mode, reflecting the importance of medium and high temperature solar collector; 2) the optimal experimental conditions of desalination device were as follows:the temperature of evaporation chamber was 103℃, the temperature of cooling water was 41℃, and the ambient temperature was 30℃, then the instantaneous water yield was as high as 2389 mL/h, and the influence degree of various factors were in the sequence of evaporation chamber temperature>cooling water temperature>ambient temperature; 3) the water yield per unit area of the desalination device under the photothermal mode and photothermal photovoltaic mode was 2172, 1167 mL/(m2·d), when the minimum heat consumption of the solar distillation process was 2.03 kW·h/m3.
-
Key words:
- solar energy /
- seawater desalination /
- photothermal photoelectric /
- island
-
[1] 顾维锴,王军锋,储进静,等.增湿除湿太阳能海水淡化系统的试验研究[J].环境工程,2014,32(增刊1):155-158,168. [2] 肖红升,刘振华,陈振玉,等.集约化多级回热式太阳能海水淡化装置[J].动力工程学报,2015,35(12):1018-1022,1029. [3] 赵云胜,郑宏飞,马兴龙,等.多级淡水吸收式交叉流加湿除湿海水淡化系统研究[J].工程热物理学报,2019,40(10):2226-2231. [4] 孙朋元,袁瀚,张继,等.海水冷冻预淡化系统的试验研究[J].中国海洋大学学报(自然科学版),2021,51(3):117-124. [5] 李瑞晨,朱国鹏,侯静,等.特征尺寸对竖管降膜太阳能海水蒸馏装置性能影响[J].太阳能学报,2020,41(8):258-263. [6] 陈刚,王璐,叶鸿烈,等.充水排气式自然真空太阳能海水淡化系统的实验研究及经济分析[J].热科学与技术,2021,20(1):92-97. [7] 李东洋,汪程鹏,王生辉,等.海岛反渗透海水淡化透平式能量回收技术工程应用[J].中国给水排水,2020,36(24):130-133,139. [8] 邢思初.三沙市永兴岛海水淡化厂工程设计[J].给水排水,2019,55(3):17-19,25. [9] FUJIWARA M, TAKAHASHI K, TAKAGI K. Improvement of condensation step of water vapor in solar desalination of seawater and the development of three-ply membrane system[J]. Desalination,2021(508):1-9. [10] XU T, XU Y X, WANG J Y, et al. Sustainable self-cleaning evaporator for long-term solar desalination using gradient structure tailored hydrogel[J]. Chemical Engineering Journal,2021,415:2-10. [11] ABDELAZIZ G B, EL-SAID E M S, BEDAIR A G, et al. Experimental study of activated carbon as a porous absorber in solar desalination with environmental, exergy, and economic analysis[J]. Process Safety and Environmental Protection,2021,147:1052-1065. [12] 中华人民共和国建设部. 民用建筑太阳能热水系统应用技术规范:GB 50364-2005[S].北京:中国建筑工业出版社,2006. [13] 黄鹏洲.风光互补独立供电系统的多目标优化设计[D].北京:北京交通大学,2010. [14] 李观宇,李倩.太阳能热利用工程[M].香港:中国文化出版社,2013. [15] 张旭朋,左然,丁刚,等.一种新型太阳能海水淡化系统的实验研究[J].节能技术,2010,28(1):51-55. [16] 郑宏飞.太阳能海水淡化原理与技术[M].北京:化学工业出版社,2013. [17] 张小曼,沈沁.无辅助热源太阳能海水淡化系统运行性能分析[J].化学工程与装备,2019(5):198-200,202. [18] 苗超,任建波,齐春华,等.强制对流换热式太阳能海水淡化装置性能分析[J].水处理技术,2015,41(10):87-90.
点击查看大图
计量
- 文章访问数: 215
- HTML全文浏览量: 21
- PDF下载量: 4
- 被引次数: 0