DISTRIBUTION CHARACTERISTICS AND RISK ASSESSMENT OF SOIL POLLUTANTS IN AN EXPLOSION SITE OF A CHEMICAL PLANT
-
摘要: 以某发生爆炸事故的有机化工厂遗留地块为研究对象,运用单因子指数法、综合污染指数法和HJ 25.3—2019《建设用地土壤污染风险评估技术导则》中推荐的风险评估模型,对场地的污染程度和健康风险进行评价,并基于人体健康风险评估,提出目标污染物的风险控制值。结果表明:土壤中的超标污染物为1,1,2-三氯乙烷、氯苯和1,4-二氯苯,主要富集于研究区中部及西北部下层土壤(2~8 m)中。单因子污染指数结果表明:3种有机物在下层土壤中存在不同程度的污染,其中氯苯的污染程度最为严重。综合污染指数结果表明:表层土壤未污染,部分下层土壤的综合污染程度呈重度污染水平。健康风险评价结果表明:研究区中部及西北部下层土壤的致癌风险和危害商超出可接受阈值,主要暴露风险来自氯苯和1,4-二氯苯等气态污染物的室内吸入途径。风险控制值计算结果表明:污染物的风险控制值远低于最大检出值,选择分层计算的风险控制值作为修复目标值时,可有效减少污染治理量。Abstract: With an abandoned land area after an explosion accident in an organic chemical plant as the research subject, the soils at different depths were evaluated using the single-factor pollution index, and comprehensive pollution index, as well as the risk assessment model recommended in the Technical Guidelines for Soil Pollution Risk Assessment of Construction Land, HJ 25.3-2019. Further, we evaluated the pollution degree and health risk of the site, and proposed risk control values of pollutants based on human health risk assessment. The results showed that excessive pollutants in the soil comprised 1,1,2-trichloroethane, chlorobenzene and 1,4-dichlorobenzene, which were mainly concentrated in the central and northwest subsoil (2 to 8 meters deep) of the study area. The results of the single-factor pollution index assessment showed that these three organic compounds displayed different degrees of pollution in the subsoil, with chlorobenzene as the most serious pollutant. The results of the comprehensive pollution index assessment showed that the topsoil was not polluted, whereas the comprehensive pollution degree of some areas in the subsoil was severe. The health risk assessment results showed that the cancer risks and hazard quotient in the central and northwest subsoil of the study area exceeded the acceptable threshold. The primary exposure risk came from the indoor inhalation pathway of gaseous pollutants, such as chlorobenzene and 1,4-dichlorobene. The calculation results of the risk control value showed that the risk control value of pollutants was far lower than the maximum detection value. When the risk control value calculated by layers was selected as the repair target value, the amount of pollution could be effectively reduced.
-
Key words:
- soil /
- pollution assessment /
- spatial distribution /
- health risk assessment /
- organic substance
-
[1] 王瑞强,许永莉,杜军,等.基于盲数与成熟度理论的化工园区火灾爆炸事故应急能力评估[J].安全与环境工程, 2021, 28(2):30-35. [2] LU Y, WANG T, LIU T. Bayesian network-based risk analysis of chemical plant explosion accidents[J]. International Journal of Environmental Research and Public Health, 2020, 17(15):5364. [3] 陈大鹏,陈力,还毅,等.盐城响水化工园区"3·21"危化品爆炸事故爆炸威力分析及灾害后果评估[J].防灾减灾工程学报, 2020,40(2):196-203. [4] PENG Y S, YANG R D, JIN T, et al. Risk assessment for potentially toxic metal(loid)s in potatoes in the indigenous zinc smelting area of northwestern Guizhou province, China[J]. Food and Chemical Toxicology, 2018, 120:328-339. [5] OYUNBAT P, BATKHISHIG O, BATSAIKHAN B, et al. Spatial distribution, pollution, and health risk assessment of heavy metal in industrial area soils of ulaanbaatar, mongolia[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021, XLIII-B4-2021:123-133. [6] WANG H, ZHANG H, TANG H, et al. Heavy metal pollution characteristics and health risk evaluation of soil around a tungsten-molybdenum mine in Luoyang, China[J]. Environmental Earth Sciences, 2021, 80(7):1-12. [7] WU B, GUO S H. Spatial ecological risk assessment for contaminated soil in oiled fields[J]. Journal of Hazardous Materials, 2021, 403:123984. [8] 吴志远,张丽娜,夏天翔,等. 基于土壤重金属及PAHs来源的人体健康风险定量评价:以北京某工业污染场地为例[J].环境科学, 2020, 41(9):4180-4196. [9] JIA J, HE H, WANG Z, et al. Human health risk levels and distribution of PAHs in soil environment of a coking chemical plant located in Beijing, China[J]. Journal of Bioremediation & Biodegradation, 2017, 8(5):1-11. [10] FM A, FHMT B, AJB C, et al. The pesticide health risk index-An application to the world's countries[J]. Science of the Total Environment, 2021, 801:149731. [11] 王甫洋,田珺,夏晶,等.南京某化工企业搬迁场地土壤有机污染调查及健康风险评价研究[J].四川环境, 2020,(1):105-111. [12] LEI R, SUN Y, ZHU S, et al. Investigation on distribution and risk assessment of volatile organic compounds in surface water, sediment, and soil in a chemical industrial park and adjacent area[J]. Molecules, 2021, 26(19):5988-5999. [13] SHUAI J, KIM S, RYU H, et al. Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea[J]. Bmc Public Health, 2018, 18(1):528. [14] RAMÍREZ N, CUADRAS A, ROVIRA E, et al. Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site[J]. Environment International, 2012, 39(1):200-209. [15] HAN L, QIAN L B, YAN J C, et al. A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater[J]. Environmental Science and Pollution Research, 2016, 23(2):1234-1245. [16] HU G, LIU H, CHEN C, et al. An integrated geospatial correlation analysis and human health risk assessment approach for investigating abandoned industrial sites-Science Direct[J]. Journal of Environmental Management, 2021, 293:112891. [17] 韩煦,陈洁,孙守钧,等.染料厂遗留场地中氯仿和苯并(a)芘的污染特征与健康风险评价[J].环境工程, 2021, 39(8):211-216. [18] 葛锋,张转霞,扶恒,等.我国有机污染场地现状分析及展望[J].土壤,2021,53(6):1132-1141. [19] XI A, CXA B, YZ A, et al. A new perspective on volatile halogenated hydrocarbons in Chinese agricultural soils-Science Direct[J]. Science of the Total Environment, 2019,703:134646. [20] 中华人民共和国生态环境部.建设用地土壤污染风险评估技术导则(发布稿):HJ 25.3-2019[S]. 北京:中国环境科学出版社,2019. [21] 翟皓宇,王少猛,谢传欣. 2,4-二硝基氯苯的合成工艺过程热风险性分析[J].青岛科技大学学报(自然科学版),2020,41(4):52-56. [22] 中华人民共和国生态环境部.土壤环境质量建设用地土壤污染风险管控标准(试行):GB 36600-2018[S].北京:中国环境科学出版社,2018. [23] 中华人民共和国生态环境部.地下水质量标准:GB/T 14848-2017[S].北京:中国环境科学出版社,2017. [24] 张浩,王辉,汤红妍,等.铅锌尾矿库土壤和蔬菜重金属污染特征及健康风险评价[J].环境科学学报,2020,40(3):1085-1094. [25] 赵靓,梁云平,陈倩,等.中国北方某市城市绿地土壤重金属空间分布特征、污染评价及来源解析[J].环境科学,2020,41(12):5552-5561. [26] LIU Q Y, WU Y H, ZHOU Y Z, et al. A novel method to analyze the spatial distribution and potential sources of pollutant combinations in the soil of Beijing urban parks[J]. Environmental Pollution, 2021, 284:117191. [27] 韩琳,徐夕博.基于PMF模型及地统计的土壤重金属健康风险定量评价[J].环境科学,2020,41(11):5114-5124. [28] NASCIMENTO C, SILVA F, NETA A, et al. Geopedology-climate interactions govern the spatial distribution of selenium in soils:a case study in northeastern Brazil[J]. Geoderma, 2021, 399(13):115119. [29] 邓劲蕾,张晟,唐敏,等.铅在搬迁企业原址场地土壤中的空间分布及生态风险[J].环境化学,2011,30(2):435-439. [30] 刘芬芬,孙小华,丁力,等. 搬迁企业原址场地土壤挥发性有机物污染特征:以北京某搬迁化工厂为例[J].城市地质,2021,16(1):18-24. [31] YOON M, MADDEN M C, BARTON H A. Extrahepatic metabolism by CYP2E1 in PBPK modeling of lipophilic volatile organic chemicals:impacts on metabolic parameter estimation and prediction of dose metrics[J]. Journal of Toxicology & Environmental Health Part A, 2007, 70(18):1527-1541. [32] ZHANG Y, QU C, QI S, et al. Spatial-temporal variations and transport process of polycyclic aromatic hydrocarbons in Poyang Lake:implication for dry-wet cycle impacts[J]. Journal of Geochemical Exploration, 2021, 226(3):106738. [33] 陈静,王学军,陶澍,等.天津地区土壤多环芳烃在剖面中的纵向分布特征[J].环境科学学报,2004, 24(2):286-290. [34] ZHAO W C, YANG X, FENG A X, et al. Distribution and migration characteristics of dinitrotoluene sulfonates (DNTs) in typical TNT production sites:effects and health risk assessment[J]. Journal of Environmental Management, 2021, 287:112342. [35] 武晓峰,谢磊,赵洪阳.土壤及地下水污染点不同暴露途径的健康风险比较[J].中国环境科学,2012,32(2):345-350. [36] SUN Y M, WANG J C, GUO G L, et al. A comprehensive comparison and analysis of soil screening values derived and used in China and the UK[J]. Environmental Pollution, 2020, 256:113404. [37] UNNITHAN A, BEKELE D, CHADALAVADA S, et al. Insights into vapour intrusion phenomena:current outlook and preferential pathway scenario[J]. Science of the Total Environment, 2021, 796:148885. [38] 董敏刚,张建荣,罗飞,等.我国南方某典型有机化工污染场地土壤与地下水健康风险评估[J].土壤,2015,47(1):100-106. [39] 房吉敦,杜晓明,李政,等.某复合型化工污染场地分地层健康风险评估[J].环境工程技术学报,2013,3(5):451-457. [40] 陈莉娜,张帅,许石豪,等.典型有机化工遗留场地的健康风险评估[J].广东化工,2017,44(9):192-195. [41] 罗飞,宋静,潘云雨,等.典型滴滴涕废弃生产场地污染土壤的人体健康风险评估研究[J]. 土壤学报, 2012, 49(1):26-35. [42] 王璇,于宏旭,熊惠磊,等.南方某典型矿冶污染场地健康风险评价及修复建议[J].环境工程学报,2017,11(6):3823-3831. [43] 许伟,施维林,沈桢,等.工业遗留场地复合型污染分层健康风险评估研究[J].土壤,2016,48(2):322-330. [44] 王佳,李余杰,陈晶,等.层次化健康风险评估方法在重金属污染场地的应用[J].重庆工商大学学报(自然科学版),2018,35(2):87-93. [45] 史俊祥,郑娟,杨洋,等.基于HERA土壤分层风险评估的SVE修复方案优化[J].环境工程学报,2019,13(12):2954-2962. [46] 刘丽丽,邓一荣,林挺,等.粤港澳大湾区典型化工地块地下水分层调查与风险评估[J].环境污染与防治,2021,43(1):67-72. [47] GENG C, LUO Q, CHEN M, et al. Quantitative risk assessment of trichloroethylene for a former chemical works in Shanghai, China[J]. Human and Ecological Risk Assessment:An International Journal, 2010, 2:429-443.
点击查看大图
计量
- 文章访问数: 157
- HTML全文浏览量: 18
- PDF下载量: 7
- 被引次数: 0