RESEARCH STATUS AND DEVELOPING TREND OF ELECTRO-CATALYTIC REDUCTION OF CO2 BASED ON BIBLIOMETRIC
-
摘要: 通过电能将CO2还原成高能化学品以实现碳减排受到全球关注。基于此,对Web of Science核心数据库中2012—2021年关于电催化还原CO2研究的4089篇文献进行调研汇总,并利用引文分析软件VOSviewer进行了计量统计和可视化分析。从多个角度分析了该领域研究发展态势,并对未来发展趋势作出预测。结果表明:2012—2021年,电催化还原CO2领域发文量保持稳中有增的态势,其中中国和美国在电催化还原CO2领域处于领先地位,2个国家的科研成果相对突出;电催化还原CO2领域研究重点由单一的金属及合金催化剂材料制备向非金属纳米结构催化剂、催化剂性能精确调控及电催化反应机理揭示等方向转变。Abstract: The reduction of CO2 into high-energy chemicals by electrical energy to achieve carbon reduction has received global attention, and the advent of the Big Data era provided a new research platform. This paper investigated and summarized 4089 papers on electro-catalytic reduction of CO2 in the Web of Science core database during 2012-2021, and used the citation analysis software VOSviewer for metric statistics and visual analysis. The research development trends in this field were analyzed from several perspectives and future development trends were predicted. The results showed that the number of articles published in the field of electro-catalytic reduction of CO2 had been steadily increasing during 2012-2021; China and the USA were the leaders in the field of electro-catalytic reduction of CO2, and the scientific achievements of them were also relatively outstanding; the research focus in the field of electro-catalytic reduction of CO2 had changed from the preparation of single metal and alloy catalyst materials to non-metallic nanostructured catalysts, precise regulation of catalyst performance and mechanism revealing of electro-catalytic reaction, etc.
-
Key words:
- electro-catalysis /
- CO2 reduction /
- bibliometric /
- visual analysis /
- VOSviewer
-
[1] SU Y, YU Y N, ZHANG N, et al. Carbon emissions and environmental management based on big data and streaming data:a bibliometric analysis[J]. Science of the Total Environment, 2020, 733:138984. [2] 严刚, 郑逸璇, 王雪松, 等. 基于重点行业/领域的我国碳排放达峰路径研究[J].环境科学研究, 2022, 35(2):309-319. [3] 刘晓龙, 崔磊磊, 李彬, 等. 碳中和目标下中国能源高质量发展路径研究[J]. 北京理工大学学报(社会科学版), 2021, 23(3):1-8. [4] SEH Z W, KIBSGAARD J, DICKENS C, et al. Combining theory and experiment in electrocatalysis:insights into materials design[J]. Science, 2017, 355(6321):eaad4998. [5] ALBO J, ALVAREZ-GUERRA M, CASTAÑO P, et al. Towards the electrochemical conversion of carbon dioxide into methanol[J]. Green Chemistry, 2015, 17(4):2304-2324. [6] APPEL A M, BERCAW J E, BOCARSLY A B, et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J]. Chemical Reviews, 2013, 113(8):6621-6658. [7] OLAH G A, PRAKASH G, GOEPPERT A. Anthropogenic chemical carbon cycle for a sustainable future[J]. Journal of the American Chemical Society, 2011, 133(33):12881-12898. [8] JOUNY M, LUC W, JIAO F. General techno-economic analysis of CO2 electrolysis systems[J]. Industrial & Engineering Chemistry Research, 2018, 57(5):2165-2177. [9] LI F W, THEVENON A, ROSAS-HERNÁNDEZ A, et al. Molecular tuning of CO2-to-ethylene conversion[J]. Nature, 2020, 577(7791):509-513. [10] ARQUER F, DINH C T, OZDEN A, et al. CO2 electrolysis to multicarbon products at activitiesgreater than 1 A/cm2[J]. Science, 2020, 367(6478):661-666. [11] WHITE H D, GRIFFITH B C. Author cocitation:a literature measure of intellectual structure[J]. Journal of the American Society for Information Science, 1981, 32(3):153-172. [12] 邱均平, 段宇锋, 陈敬全, 等. 我国文献计量学发展的回顾与展望[J]. 科学学研究, 2003, 21(2):143-148. [13] JIMÉNEZ-GARCÍA M, RUIZ-CHICO J, PEÑA-SÁNCHEZ A R, et al. A bibliometric analysis of sports tourism and sustainability (2002-2019)[J]. Sustainability, 2020, 12(7):2840. [14] 王永林, 张传合, 赵宇鹏, 等. 基于Web of Science数据库的土壤生物修复研究趋势分析[J]. 环境工程, 2021, 39(9):199-204. [15] ECK N, WALTMAN L. Software survey:VOS viewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2):523-538. [16] 胡旭,江涵,张锐.沙特能源转型及氢能发展展望[J].储能科学与技术,2022,11(7):2354-2365. [17] 刘辰, 马鸾宇. 沙特阿拉伯新能源政策研究[J]. 长春师范大学学报, 2021,40(3):63-68. [18] ALHEJI A K B. 沙特阿拉伯王国生态城建设体系研究[D]. 天津:天津大学, 2019. [19] 梅德文, 葛兴安, 邵诗洋. 自愿减排交易助力实现"双碳"目标[J]. 清华金融评论, 2021(10):56-59. [20] 任孝平, 杨云, 周小林, 等. 2006-2015年国内科研机构国际合作现状研究[J]. 情报工程, 2019, 5(4):70-78. [21] PURVIS B, MAO Y, ROBINSON D. Three pillars of sustainability:in search of conceptual origins[J]. Sustainability science, 2019, 14(3):681-695. [22] BAILÓN-MORENO R, JURADO-ALAMEDA E, RUIZ-BAÑOS R, et al. The unified scientometric model. Fractality and transfractality[J]. Scientometrics, 2005, 63(2):231-257. [23] 魏明坤. 基于h指数修正的学者历时影响力研究[J]. 现代情报, 2021, 41(1):152-157. [24] CALLON M, COURTIAL J P, TURNER W A, et al. From translations to problematic networks:an introduction to co-word analysis[J]. Social Science Information, 1983, 22(2):191-235. [25] MISTRY H, VARELA A S, KVHL S, et al. Nanostructured electrocatalysts with tunable activity and selectivity[J]. Nature Reviews Materials, 2016, 1(4):16009. [26] WANG L M, CHEN W L, ZHANG D D, et al. Surface strategies for catalytic CO2 reduction:from two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews, 2019, 21(48):5310-5349. [27] 董灵玉, 葛睿, 原亚飞, 等. 多孔炭基二氧化碳电催化材料研究进展[J]. 化工学报, 2020, 71(6):2492-2509. [28] 穆春辉, 张艺馨, 寇伟, 等. 镍氮掺杂有序大孔/介孔碳负载银纳米颗粒用于高效电催化CO2还原[J]. 化学学报, 2021, 79(7):925-931. [29] WANG X W, SUN G Z, ROUTH P, et al. Heteroatom-doped graphene materials:syntheses, properties and applications[J]. Chemical Society Reviews, 2014, 43(20):7067-7098. [30] HE J F, JOHNSON N, HUANG A X, et al. Electrocatalytic alloys for CO2 reduction[J]. ChemSusChem, 2018, 11(1):48-57. [31] 于丰收, 张鲁华. Cu基纳米材料电催化还原CO2的结构-性能关系[J]. 化工学报, 2021, 72(4):1815-1824. [32] KUHL K, CAVE E, ABRAM D, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5:7050-7059. [33] ITO Y, KUKUNURI S, JEONG S, et al. Phase-dependent electrochemical CO2 reduction ability of NiSn alloys for formate generation[J]. ACS Applied Energy Materials, 2021, 4(7):7122-7128. [34] 苏文礼, 范煜. 金属基材料电催化CO2还原的研究进展[J]. 化工进展, 2021, 40(3):1384-1394. [35] CLARK E L, HAHN C, JARAMILLO T F, et al. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity[J]. Journal of the American Chemical Society, 2017, 139(44):15848. [36] HAMMER B, MORIKAWA Y, NØRSKOV J K. CO chemisorption at metal surfaces and overlayers[J]. Physical Review Letters, 1996, 76(12):2141-2144. [37] LUDWIG A, KIBLER, AHMED M, et al. Tuning reaction rates by lateral strain in a palladium monolayer[J]. Angewandte Chemie International Edition, 2005, 44(14):2080-2084. [38] SANDBERG R B, MONTOYA J H, CHAN K, et al. CO-CO coupling on Cu facets:coverage, strain and field effects[J]. Surface Science, 2016, 654:56-62. [39] KIM J J, SUMMERS D P, FRESE K W. Reduction of CO2 and CO to methane on Cu foil electrodes[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1988, 245(1/2):223-244. [40] ISMAIL A M, SAMU G F, BALOG A, et al. Composition dependent electrocatalytic behavior of Au-Sn bimetallic nanoparticles in carbon dioxide reduction[J]. ACS Energy Letters, 2018, 4(1):48-53. [41] HE J F, DETTELBACH K E, HUANG A X, et al. Brass and bronze as effective CO2 reduction electrocatalysts[J]. Angewandte Chemie, 2017, 129(52):16579. [42] HANDOKO A D, WEI F X, JENNDY, et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques[J]. Nature Catalysis, 2018, 1(12):922-934. [43] WEEKES D M, SALVATORE D A, REYES A, et al. Electrolytic CO2 reduction in a flow cell[J]. Accounts of Chemical Research, 2018, 51(4):910-918. [44] CAI F, GAO D F, ZHOU H, et al. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction[J]. Chemical Science, 2017, 4(8):2569-2573.
点击查看大图
计量
- 文章访问数: 334
- HTML全文浏览量: 35
- PDF下载量: 11
- 被引次数: 0