RESEARCH PROGRESS OF MOFs-BASED POROUS MATERIALS IN ADSORPTIVE REMOVAL OF VOCs
-
摘要: 大气中挥发性有机物(VOCs)严重威胁生态环境和人类健康,其治理迫在眉睫。吸附法因操作简单、效率高、能耗低等优势成为目前处理VOCs最经济有效的方法之一。但传统吸附材料如分子筛、活性炭、硅藻土等存在吸附容量小、易堵塞、选择性低且再生困难等问题。因此,发展高效稳定的VOCs吸附材料仍是目前的研究热点。金属有机框架材料(metal-organic frameworks,MOFs)是一种比表面积高、孔道结构丰富的新型多孔材料,在VOCs吸附净化方面具有良好的应用潜力。针对近10年MOFs基多孔材料吸附去除VOCs的研究,从MOFs的结构和特点出发,详述MOFs的分类及其复合材料的类型,基于MOFs基多孔材料吸附VOCs过程中的影响因素和机制,对其在VOCs吸附应用方面的研究进展进行总结,并对其在该领域的未来发展进行展望。Abstract: Volatile organic compounds (VOCs) in the atmosphere are harmful to the ecological environment and human health, and need urgent treatment. The adsorption method has become one of the most economical and effective methods for VOCs removal, due to its advantages of simple operation, high efficiency, and low energy consumption. Traditional adsorption materials such as molecular sieve, activated carbon, and diatomite are limited by small adsorption capacity, easy plugging, low selectivity, difficult regeneration, etc. Therefore, it is still a current research hotspot to develop efficient and stable VOCs adsorption materials. Metal-organic frameworks (MOFs), as a new type of porous material, have shown good performance in VOCs adsorption due to their high specific surface area, abundant pore structures, and adjustable chemical characters. This review focused on the studies of VOCs adsorption using MOFs-based porous materials in the past 10 years. Starting from the structures and characteristics of MOFs, the classification of MOFs and types of their composites were described in detail. Based on the influential factors and adsorption mechanisms in the adsorption process of VOCs on MOFs-based porous materials, the research progress of MOFs-based porous materials in the application of VOCs adsorption was summarized and its future development in this field was looked forward.
-
[1] World Health Organization. Indoor air quality:organic pollutants[J]. Environmental Technology Letters, 1989, 10(9):855-858. [2] 郝迪. 室内空气VOCs污染研究现状及防治措施[J]. 煤炭与化工, 2019, 42(4):153-154. [3] LYON F. IARC monographs on the evaluation of carcinogenic risks to humans[J]. Some Industrial Chemicals, 1994, 60:389-433. [4] LIU Y H, WANG H L, JING S G, et al. Strong regional transport of volatile organic compounds (VOCs) during wintertime in Shanghai megacity of China[J]. Atmospheric Environment, 2021, 244:117940. [5] HUI L R, LIU X G, TAN Q W, et al. VOC characteristics, chemical reactivity and sources in urban Wuhan, central China[J]. Atmospheric Environment, 2020, 224:117340. [6] LI Q Q, SU G J, LI C Q, et al. An investigation into the role of VOCs in SOA and ozone production in Beijing, China[J]. Science of the Total Environment, 2020, 720:137536. [7] 刘帅, 张亚妮, 薛明, 等. 挥发性有机物(VOCs)吸附材料的研究进展[J]. 环境工程, 2021, 39(6):79-89. [8] 李红双. 用于VOCs吸附的碳质材料研究[J]. 当代化工研究, 2020(21):149-150. [9] DENG H, PAN T T, ZHANG Y, et al. Adsorptive removal of toluene and dichloromethane from humid exhaust on MFI, BEA and FAU zeolites:an experimental and theoretical study[J]. Chemical Engineering Journal, 2020, 394:124986. [10] CHEN D S, LI Y T, ZHONG X M, et al. Preparation of novel MOF with multipolar pore and adsorption properties of VOCs[J]. IOP Conference Series:Earth and Environmental Science, 2019, 300(3):032008. [11] DUAN C X, YU Y, XIAO J, et al. Water-based routes for synthesis of metal-organic frameworks:a review[J]. Science China Materials, 2020, 63(5):667-685. [12] DU Q X, RAO R Z, BI F K, et al. Preparation of modified zirconium-based metal-organic frameworks (Zr-MOFs) supported metals and recent application in environment:a review and perspectives[J]. Surfaces and Interfaces, 2022, 28:101647. [13] 谭玉简, 刘民, 郭新闻, 等. 溶剂和微波辅助对NH2-MIL-125-Ti制备及其光催化性能的影响[J]. 石油学报(石油加工), 2021, 37(4):744-756. [14] 党璐童, 康永锋. 金属有机框架材料合成方法研究进展[J]. 化工新型材料, 2020, 48(10):15-19,24. [15] 郭晓欣, 张超艳, 张瑞环, 等. MIL-101高效吸附测定土壤气中三氯乙烯及健康风险评估[J]. 环境科学研究, 2018, 31(6):1129-1137. [16] LI X Q, ZHANG L, YANG Z Q, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process:a review[J]. Separation and Purification Technology, 2020, 235:116213. [17] 李莹. MOFs材料储氢量影响因素研究进展[J]. 安全、健康和环境, 2021, 21(9):6-13,49. [18] FURUKAWA H, KO N, GO Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990):424-428. [19] YANG X, YI H H, TANG X L, et al. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure[J]. Journal of Environmental Sciences, 2018, 67(5):104-114. [20] WU S H, WANG Y Q, SUN C, et al. Novel preparation of binder-free Y/ZSM-5 zeolite composites for VOCs adsorption[J]. Chemical Engineering Journal, 2021, 417:129172. [21] 贾李娟, 沈祥斌, 杨茗璇, 等. 石墨烯和超高交联树脂对苯和对二甲苯的动态吸附特性[J/OL]. 安全与环境学报:1-11[2022-03-19]. http://kns.cnki.net/kcms/detail/11.4537.X.20211202.2249.002.html. [22] LIU X F, HE Y G, YANG B B, et al. Highly efficient photo-degradation of gaseous organic pollutants catalyzed by diatomite-supported titanium dioxide[J]. Catalysts, 2020, 10(4):380. [23] YANG Y X, SUN C, HUANG Q X, et al. Hierarchical porous structure formation mechanism in food waste component derived N-doped biochar:application in VOCs removal[J]. Chemosphere, 2022, 291:132702. [24] 张伟明, 修立群, 吴迪, 等. 生物炭的结构及其理化特性研究回顾与展望[J]. 作物学报, 2021, 47(1):1-18. [25] GONZALEZ A S, PLAZA M G, RUBIERA F, et al. Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture[J]. Chemical Engineering Journal, 2013, 230:456-465. [26] 余岩松, 吴柳彦, 刘慧娟, 等. 双组分VOCs在吸附树脂上的吸附穿透特性[J]. 中国环境科学, 2020, 40(5):1982-1990. [27] 杨建成, 王诗宁, 杨硕, 等. 金属有机框架材料吸附VOCs影响因素研究进展[J]. 化工进展, 2021, 40(1):463-476. [28] WANG B J, MA S Y, PEI S T, et al. High specific surface area SnO2 prepared by calcining Sn-MOFs and their formaldehyde-sensing characteristics[J]. Sensors and Actuators B:Chemical, 2020, 321:128560. [29] 黄钟毅, 梁祥京, 潘熙, 等. IRMOFs基金属有机骨架材料合成及性能优化研究进展[J]. 工业催化, 2021, 29(8):7-12. [30] VELLINGIRI K, KUMAR P, DEEP A, et al. Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure[J]. Chemical Engineering Journal, 2017, 307:1116-1126. [31] 党小庆, 王琪, 曹利, 等. 吸附法净化工业VOCs的研究进展[J]. 环境工程学报, 2021, 15(11):3479-3492. [32] 徐奥, 李旭飞, 黄维秋. UiO-66改性对正己烷的吸附性能研究[J]. 化工新型材料, 2022, 50(1):211-216. [33] 任秀秀, 夏凌云, 梁梦迪, 等. UiO-66及其官能化改性材料对C6烷烃吸附性能研究[J]. 常州大学学报(自然科学版), 2021, 33(5):50-58. [34] 朱文健, 刘建峰, 胡小才, 等. MIL-101的制备及其VOCs吸附性能研究[J]. 江苏科技大学学报(自然科学版), 2020, 34(3):79-83,118. [35] WANG Y T, LV Y Y, ZHAN W W, et al. Synthesis of porous Cu2O/CuO cages using Cu-based metal-organic frameworks as templates and their gas-sensing properties[J]. Journal of Materials Chemistry A, 2015, 3(24):12796-12803. [36] 王文文, 郭振济, 刘忠源, 等. MOFs材料在VOCs吸附中的应用与展望[C]//中国环境科学学会2020科学技术年会. 南京, 2020, 4389-4393. [37] JIANG Z R, LI Y X, ZHANG D Y, et al. Decorating S-doped Cu-La bimetallic oxides with UIO-66 to increase the As(Ⅲ) adsorption capacity via synchronous oxidation and adsorption[J]. Journal of Hazardous Materials, 2021,418:126238. [38] 周丹娜. 金属有机骨架材料MIL-53制备及其对甲苯吸附性能实验研究[D]. 武汉:华中科技大学, 2018. [39] SUN X J, LI Y J, XI H X, et al. Adsorption performance of a MIL-101(Cr)/graphite oxide composite for a series of n-alkanes[J]. RSC Advances, 2014, 4(99):56216-56223. [40] LI H L, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759):276-279. [41] 任柳芬, 陈曙光, 杨坤. 金属-有机骨架材料制备及其吸附净化挥发性有机物应用[J]. 化学工业与工程, 2015, 32(3):10-23. [42] BRITT D, TRANCHEMONTAGNE D, YAGHI O M. Metal-organic frameworks with high capacity and selectivity for harmful gases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33):11623-11627. [43] 宗云鹤, 刘泓, 毛详双, 等. IRMOF3的合成后修饰(PSM)及其生物碱吸附研究[J]. 南开大学学报(自然科学版), 2019, 52(3):100-104. [44] KUMAR A, CHOWDHURI A R, KUMARI A, et al. IRMOF-3:a fluorescent nanoscale metal-organic frameworks for selective sensing of glucose and Fe(Ⅲ) ions without any modification[J]. Materials Science & Engineering:C, 2018, 92(9):913-921. [45] MA S Q, ZHOU H C. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity[J]. Journal of the American Chemical Society, 2006, 128(36):11734-11735. [46] MA S Q, SUN D F, SIMMONS J M, et al. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake[J]. Journal of the American Chemical Society, 2008, 130(3):1012-1016. [47] PARK K S, NI Z, COTE A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27):10186-10191. [48] JHINJER H S, SINGH A, BHATTACHARYA S, et al. Metal-organic frameworks functionalized smart textiles for adsorptive removal of hazardous aromatic pollutants from ambient air[J]. Journal of Hazardous Materials, 2021, 411:125056. [49] WANG D W, LI Z W, ZHOU J, et al. Simultaneous detection and removal of formaldehyde at room temperature:Janus Au@ZnO@ZIF-8 nanoparticles[J]. Nano-Micro Letters, 2018, 10(1):32-42. [50] XIE F, WANG Y F, ZHUO L H, et al. Multiple hydrogen bonding self-assembly tailored electrospun polyimide hybrid filter for efficient air pollution control[J]. Journal of Hazardous Materials, 2021, 412:125260. [51] FEREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743):2040-2042. [52] BORZEHANDANI M Y, ABDULMALEK E, RAHMAN M B A, et al. First-principles investigation of dimethyl-functionalized MIL-53(Al) metal-organic framework for adsorption and separation of xylene isomers[J]. Journal of Porous Materials, 2021, 28(2):579-591. [53] BLESSTO B, NAIR S, SIVAPRASAD K, et al. Simulations on compressive properties of Al-Cu metal intermetallic laminates (MILs) using FEA[J]. Materials Today:Proceeding, 2021, 41:1110-1115. [54] VIKRANT K, KIM K H, KUMAR V, et al. Adsorptive removal of an eight-component volatile organic compound mixture by Cu-, Co-, and Zr-metal-organic frameworks:experimental and theoretical studies[J]. Chemical Engineering Journal, 2020, 397:125391. [55] ZHANG X D, LV X T, SHI X Y, et al. Enhanced hydrophobic UiO-66(University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air[J]. Journal of Colloid and Interface Science, 2019, 539:152-160. [56] TIAN F M, ZHANG X H, CHEN Y L. Highly selective adsorption and separation of dichloromethane/trichloromethane on a copper-based metal-organic framework[J]. RSC advances, 2016, 6(37):31214-31224. [57] 冯爱玲, 王彦妮, 徐榕, 等. 多功能MOFs基复合材料研究进展[J]. 功能材料, 2018, 49(11):11061-11070. [58] 耿莹, 张默贺, 付锦, 等. MOF-74及其复合物:多样合成与广泛应用[J]. 化学进展, 2021, 33(12):2283-2308. [59] QIN C, WANG B, WU N, et al. General strategy to fabricate porous Co-based bimetallic metal oxide nanosheets for high-performance CO sensing[J]. ACS Applied Materials & Interfaces, 2021, 13(22):26318-26329. [60] 祖梅, 许海涛, 谢炜, 等. 金属有机框架材料的水稳定性及吸水应用进展[J/OL]. 化工进展:1-18[2022-03-24]. DOI: 10.16085/j.issn.1000-6613.2021-2040. [61] 郭梦辉, 王雨萌, 齐蓓影, 等. ZIF-8衍生La掺杂ZnO纳米颗粒的制备及其气敏性能[J]. 材料科学与工程学报, 2022,40(1):51-56,128. [62] KOO W T, KIM S J, JANG J S, et al. Catalytic metal nanoparticles embedded in conductive metal-organic frameworks for chemiresistors:highly active and conductive porous materials[J]. Advanced Science, 2019, 6(21):1900250. [63] 李红欣. 锰基MOFs及其衍生物吸附催化典型气态污染物的性能研究[D]. 上海:上海理工大学, 2018. [64] 丁威. MOFs复合材料和ZIFs材料的CH4/N2选择吸附性能研究[D]. 北京:中国矿业大学, 2019. [65] LI M L, HUANG W Q, TANG B, et al. Preparation of a composite material AC/Cu-BTC with improved water stability and n-hexane vapor adsorption[J]. Journal of Nanomaterials, 2019:1-9. [66] SUN Y F, MA M, TANG B, et al. Graphene modified Cu-BTC with high stability in water and controllable selective adsorption of various gases[J]. Journal of Alloys and Compounds, 2019, 808:151721. [67] LI Y J, MIAO J P, SUN X J, et al. Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity[J]. Chemical Engineering Journal, 2016, 298:191-197. [68] LI M, LI Y W, LI W, et al. Synthesis and application of Cu-BTC@ZSM-5 composites as effective adsorbents for removal of toluene gas under moist ambience:kinetics, thermodynamics, and mechanism studies[J]. Environmental Science and Pollution Research, 2020, 27:6052-6065. [69] SAINI V K, PIRES J. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs[J]. Journal of Environmental Sciences, 2017, 55:321-330. [70] FAGHIHI M, AKBARBANDARI F, ZABIHI M, et al. Synthesis and characterization of the magnetic supported metal-organic framework catalysts (CuCoBTC@MAC and CuBTC@MAC) for the hydrogen production from sodium borohydride[J]. Materials Chemistry and Physics, 2021, 267:124599. [71] 王秀秀. 磁性金属有机骨架材料的研究进展[J]. 辽宁化工, 2022, 51(2):247-250. [72] 郭成龙, 谢海媚, 张勇, 等. 原位合成CuFe2O4/Cu-金属有机框架及其对萘的吸附机理和性能研究[J]. 化工新型材料, 2020, 48(6):196-202,207. [73] YANG K, XUE F, SUN Q, et al. Adsorption of volatile organic compounds by metal-organic frameworks MOF-177[J]. Journal of Environmental Chemical Engineering, 2013, 1(4):713-718. [74] 刘国强, 王明玺, 黄正宏, 等. GO/MOF复合材料的制备及其吸附苯和乙醇性能[J]. 新型炭材料, 2015, 30(6):566-571. [75] YANG K, SUN Q, XUE F, et al. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101:influence of molecular size and shape[J]. Journal of Hazardous Materials, 2011, 195:124-131. [76] CUI X F, SUN X D, LIU L, et al. In-situ fabrication of cellulose foam HKUST-1 and surface modification with polysaccharides for enhanced selective adsorption of toluene and acidic dipeptides[J]. Chemical Engineering Journal, 2019, 369:898-907. [77] GU Z Y, JIANG D Q, WANG H F, et al. Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks[J]. The Journal of Physical Chemistry C, 2010, 114(1):311-316. [78] XU H, CAI J F, XIANG S C, et al. A cationic microporous metal-organic framework for highly selective separation of small hydrocarbons at room temperature[J]. Journal of Materials Chemistry A, 2013, 1(34):9916-9921. [79] 刘航希, 隋红, 李鑫钢, 等. 甲苯分子在铝基金属-有机骨架材料上的吸附特性[J]. 化工进展, 2016, 35(11):3707-3713. [80] 吴颖. 金属-有机骨架材料的吸附分离机理及功能化的计算化学研究[D].广州:华南理工大学, 2017. [81] QIN W P, CAO W X, LIU H, et al. Metal-organic framework MIL-101 doped with palladium for toluene adsorption and hydrogen storage[J]. RSC Advances, 2014, 4(5):2414-2420. [82] 刘克峰, 任丹妮, 孙辉, 等. ZIF-8的合成、表征及正己烷吸附性能[J]. 高等学校化学学报, 2016, 37(10):1856-1862. [83] 袁艺, 李泽晖, 王亚玲, 等. 金属-有机骨架材料对环境中典型苯系物的吸附研究进展[J]. 化工新型材料, 2019, 47(8):18-22. [84] ISLAMOGLU T, GOSWAMI S, LI Z Y, et al. Postsynthetic tuning of metal-organic frameworks for targeted applications[J]. Accounts of Chemical Research, 2017, 50(4):805-813. [85] KE D, FENG J F, WU D, et al. Facile stabilization of a cyclodextrin metal-organic framework under humid environment via hydrogen sulfide treatment[J]. RSC advances, 2019, 9(32):18271-18276. [86] ZHAO Z X, WANG S, YANG Y, et al. Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1)[J]. Chemical Engineering Journal, 2015, 259:79-89. [87] SENKER J. Crumple zones in MOFs[J]. Nature chemistry, 2018, 10:1079-1081. [88] VELLINGIRI K, KUMAR P, DEEP A, et al. Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure[J]. Chemical Engineering Journal, 2017, 307:1116-1126. [89] VIKRANT K, CHO M, KHAN A, et al. Adsorption properties of advanced functional materials against gaseous formaldehyde[J]. Environmental Research, 2019, 178:108672. [90] HU P, LIANG X P, YASEEN M, et al. Preparation of highly-hydrophobic novel N-coordinated UiO-66(Zr) with dopamine via fast mechano-chemical method for (CHO-/Cl-)-VOCs competitive adsorption in humid environment[J]. Chemical Engineering Journal, 2018, 332:608-618. [91] 陈建东, 许伟城, 吴军良, 等. 金属有机框架ZIF-8/聚二乙烯基苯纳米复合材料的合成及其吸附VOCs的性能[J]. 环境科学学报, 2017, 37(5):1877-1883.
点击查看大图
计量
- 文章访问数: 572
- HTML全文浏览量: 69
- PDF下载量: 20
- 被引次数: 0