中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭促进餐厨垃圾发酵产己酸效能及机理研究

丁子贞 徐先宝 欧阳创 薛罡 李响

丁子贞, 徐先宝, 欧阳创, 薛罡, 李响. 生物炭促进餐厨垃圾发酵产己酸效能及机理研究[J]. 环境工程, 2022, 40(12): 29-36. doi: 10.13205/j.hjgc.202212005
引用本文: 丁子贞, 徐先宝, 欧阳创, 薛罡, 李响. 生物炭促进餐厨垃圾发酵产己酸效能及机理研究[J]. 环境工程, 2022, 40(12): 29-36. doi: 10.13205/j.hjgc.202212005
DING Zizhen, XU Xianbao, OUYANG Chuang, XUE Gang, LI Xiang. EFFECT OF BIOCHAR ON CAPROATE PRODUCTION DURING FOOD WASTE FERMENTATION AND THE MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 29-36. doi: 10.13205/j.hjgc.202212005
Citation: DING Zizhen, XU Xianbao, OUYANG Chuang, XUE Gang, LI Xiang. EFFECT OF BIOCHAR ON CAPROATE PRODUCTION DURING FOOD WASTE FERMENTATION AND THE MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 29-36. doi: 10.13205/j.hjgc.202212005

生物炭促进餐厨垃圾发酵产己酸效能及机理研究

doi: 10.13205/j.hjgc.202212005
基金项目: 

上海市科技创新行动计划资助(19DZ1204700)

国家自然科学基金国际合作与交流资助(52161135105)

详细信息
    作者简介:

    丁子贞(1997-),女,硕士研究生,主要研究方向为固废处理与资源化。zizhen0312@163.com

    通讯作者:

    李响(1987-),男,博士,教授,主要研究方向为固废处理与资源化。lix@dhu.edu.cn

EFFECT OF BIOCHAR ON CAPROATE PRODUCTION DURING FOOD WASTE FERMENTATION AND THE MECHANISM

  • 摘要: 研究了餐厨垃圾制备的水热炭和热解炭对餐厨垃圾发酵产己酸的影响,分析了生物炭的理化性质及微生物群落结构。结果表明:空白组己酸最大产量仅为1.65 g COD/L,投加5 g/L水热炭和热解炭对产己酸均有促进作用,己酸最大产量分别为3.64,24.24 g COD/L,为空白组的2.2,14.7倍;而过量水热炭和热解炭(10 g/L和20 g/L)反而对产己酸具有抑制效应。生物炭理化性质对比分析表明:热解炭可促进直接种间电子传递,比表面积更大的热解炭可为产己酸功能菌群提供更大面积的附着位点,富集己酸功能菌,促进乙醇和丁酸转化成己酸。微生物群落分析表明:5 g/L热解炭组产己酸功能菌Clostridium_sensu_stricto_12CaproiciproducensClostridium_sensu_stricto_11的相对丰度分别为35.6%、2.0%和1.7%。
  • [1] 吴凡,江皓,李叶青. 利用厌氧发酵技术合成中链羧酸的研究进展[J]. 环境工程,2021,39(8):150-155

    ,216.
    [2] SPIRITO C M, MARZILLI A M, ANGENENT L T. Higher substrate ratios of ethanol to acetate steered chain elongation toward n-Caprylate in a bioreactor with product extraction[J]. Environmental Science & Technology, 2018, 52(22):13438-13447.
    [3] WU Q L, JIANG Y, CHEN Y, et al. Opportunities and challenges in microbial medium chain fatty acids production from waste biomass[J]. Bioresource Technology, 2021, 340:125633.
    [4] ANDERSEN, S J, DE GROOF, V, KHOR, W C, et al. A clostridium group Ⅳ species dominates and suppresses a mixed culture fermentation by tolerance to medium chain fatty acids products[J]. Frontiers in Bioengineering and Biotechnology, 2017, 5:8.
    [5] LIU Y H, LV F, SHAO L M, et al. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum[J]. Bioresource Technology, 2016, 218:1140-1150.
    [6] VASUDEVAN D, RICHTER H, ANGENENT L T. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes[J]. Bioresource Technology, 2014, 151:378-382.
    [7] KHALID S, SHAHID M, MURTAZA B, et al. A critical review of different factors governing the fate of pesticides in soil under biochar application[J]. Science of the Total Environment, 2020, 711:134645.
    [8] 廖雨晴,KO Jaehac,袁土贵,等. 污泥基生物炭对餐厨垃圾厌氧消化产甲烷及微生物群落结构的影响[J]. 环境工程学报,2020,14(2):523-534.
    [9] 唐梦园,赵佳奇,邱春生,等. 生物炭理化特性及其对厌氧消化效率提升的研究进展[J]. 环境工程,2021,39(9):138-145.
    [10] WEI Z, WANG J J, GASTON L A, et al. Remediation of crude oil-contaminated coastal marsh soil:integrated effect of biochar, rhamnolipid biosurfactant and nitrogen application[J]. Journal of Hazardous Materials, 2020, 396:122595.
    [11] WEI W, GUO W H, NGO H H, et al. Enhanced high-quality biomethane production from anaerobic digestion of primary sludge by corn stover biochar[J]. Bioresource Technology, 2020, 306:123159.
    [12] INDREN M, BIRZER C H, KIDD SP, et al. Effects of biochar parent material and microbial pre-loading in biochar amended high-solids anaerobic digestion[J]. Bioresource Technology, 2020, 298:122457.
    [13] ZHAI S M, LI M, XIONG Y H, et al. Dual resource utilization for tannery sludge:effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion[J]. Bioresource Technology, 2020, 316:123903.
    [14] LIU Y H, HE P J, SHAO L M, et al. Significant enhancement by biochar of caproate production via chain elongation[J]. Water Research, 2017, 119:150-159.
    [15] LIU Y H, HE P J, HAN W H, et al. Outstanding reinforcement on chain elongation through five-micrometer-sized biochar[J]. Renewable Energy, 2020, 161:230-239.
    [16] LI X, CHEN Y G, ZHAO S, et al. Efficient production of optically pure L-lactic acid from food waste at ambient temperature by regulating key enzyme activity[J]. Water Research, 2015, 70:148-157.
    [17] LI X, ZHANG W J, XUE S L, et al. Enrichment of D-lactic acid from organic wastes catalyzed by zero-valent iron:an approach for sustainable lactate isomerization[J]. Green Chemistry, 2017, 19(4):869-1196.
    [18] CROGNALE S, BRAGUGLIA C M, GALLIPOLI A, et al. Direct conversion of food waste extract into caproate:metagenomics assessment of chain elongation process[J]. Microorganisms, 2021, 9(2):327.
    [19] AWASTHI M K, AWASTHI S K, WANG Q, et al. Influence of biochar on volatile fatty acids accumulation and microbial community succession during biosolids composting[J]. Bioresource Technology, 2018, 251:158-164.
    [20] 王欣, 尹带霞, 张凤,等. 生物炭对土壤肥力与环境质量的影响机制与风险解析[J]. 农业工程学报, 2015, 31(4):248-257.
    [21] 吴清莲. 乙醇和乳酸引导的碳链增长技术生产中链羧酸的研究[D]. 哈尔滨:哈尔滨工业大学,2019.
    [22] KUCEK L A, NGUYEN M, ANGENENT L T. Conversion of l-lactate into n-caproate by a continuously fed reactor microbiome[J]. Water Research, 2016, 93:163-171.
    [23] COMA M, VILCHEZ-vargas R, ROUME H, et al. Product diversity linked to substrate usage in chain elongation by mixed-culture fermentation[J]. Environmental Science & Technology, 2016, 50(12):6467-6476.
    [24] 李旭升,鹿莎莎,江远琰,等. 生物炭缓解餐厨垃圾厌氧消化酸化的效果及机制[J]. 环境工程,2021,39(12):179-187.
    [25] 曹秀芹,刘丰,柴莲莲,等. 污泥生物炭制备与其对土壤环境影响的研究进展[J]. 环境工程,2022,40(3):203-211.
    [26] SUN T R, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communications, 2017, 8(1):14873.
    [27] 秦曦. 微生物电催化耦合磁铁矿负载型生物炭强化污泥厌氧消化机理研究[D]. 华东师范大学,2022.
    [28] ZHANG L L, WANG K, YU L Y, et al. Why does sludge-based hydochar activate peroxydisulfate to remove atrazine more efficiently than pyrochar?[J]. Applied Catalysis B:Environmental, 2021, 299:120663.
    [29] YUAN H Y, DING L J, ZAMA E F, et al. Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate[J]. Environmental Science & Technology, 2018, 52(21):12198-12207.
    [30] XIAO X, CHEN B L, CHEN Z M, et al. Insight into multiple and multilevel structures of biochars and their potential environmental applications:a critical review[J]. Environmental Science & Technology, 2018, 52(9):5027-5047.
    [31] WU S L, W W, XU Q X, et al. Revealing the mechanism of biochar enhancing the production of medium chain fatty acids from waste activated sludge alkaline fermentation liquor[J]. ACS ES&T Water, 2021, 1(4):1014-1024.
    [32] CHEN Y,JIANG X,XIAO K,et al.Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase:investigation on dissolved organic matter transformation and microbial community shift[J]. Water Research, 2017, 112:261-268.
    [33] 郭志超,徐先宝,徐婷婷,等. 接种不同菌源的餐厨垃圾发酵代谢途径及产己酸效能分析[J]. 环境工程,2021,39(9):160-168.
    [34] DONG W W, ZENG Y T, CUI Y X, et al. Unraveling the composition and succession of microbial community and its relationship to flavor substances during Xin-flavor baijiu brewing[J]. International Journal of Food Microbiology, 2022, 372:109679.
    [35] KIM B C, SEUNG J B, KIM S, et al. Caproiciproducens galactitolivorans gen. nov., sp. nov., a bacterium capable of producing caproic acid from galactitol, isolated from a wastewater treatment plant[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(12):4902-4908.
    [36] ZHAO Z Q, WANG J F, Li Y, et al. Why do DIETers like drinking:metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol[J]. Water Research, 2020, 171:115425.
    [37] SHI Z J, CAMPANARO S, USMAN M, et al. Genome-Centric metatranscriptomics analysis reveals the role of hydrochar in anaerobic digestion of waste activated sludge[J]. Environmental Science & Technology, 2021, 55(12):8351-8361.
    [38] ZHU Z W, HU Y T, TEIXEIRA P G, et al. Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids[J]. Nature Catalysis, 2020, 3(1):64-74.
  • 加载中
计量
  • 文章访问数:  177
  • HTML全文浏览量:  26
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 网络出版日期:  2023-03-23

目录

    /

    返回文章
    返回