CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

猪粪堆肥过程中腐殖酸电子转移机制及光谱演化特征

李柯蒙 李洁月 游少鸿 孙晓杰 李宁杰 黄宏伟 肖河

李柯蒙, 李洁月, 游少鸿, 孙晓杰, 李宁杰, 黄宏伟, 肖河. 猪粪堆肥过程中腐殖酸电子转移机制及光谱演化特征[J]. 环境工程, 2022, 40(12): 79-88. doi: 10.13205/j.hjgc.202212011
引用本文: 李柯蒙, 李洁月, 游少鸿, 孙晓杰, 李宁杰, 黄宏伟, 肖河. 猪粪堆肥过程中腐殖酸电子转移机制及光谱演化特征[J]. 环境工程, 2022, 40(12): 79-88. doi: 10.13205/j.hjgc.202212011
LI Kemeng, LI Jieyue, YOU Shaohong, SUN Xiaojie, LI Ningjie, HUANG Hongwei, XIAO He. ELECTRON TRANSFER MECHANISM AND SPECTRAL EVOLUTION CHARACTERISTICS OF HUMIC ACID DURING PIG MANURE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 79-88. doi: 10.13205/j.hjgc.202212011
Citation: LI Kemeng, LI Jieyue, YOU Shaohong, SUN Xiaojie, LI Ningjie, HUANG Hongwei, XIAO He. ELECTRON TRANSFER MECHANISM AND SPECTRAL EVOLUTION CHARACTERISTICS OF HUMIC ACID DURING PIG MANURE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 79-88. doi: 10.13205/j.hjgc.202212011

猪粪堆肥过程中腐殖酸电子转移机制及光谱演化特征

doi: 10.13205/j.hjgc.202212011
基金项目: 

广西青年科学基金项目(2020GXNSFBA159040)

广西创新研究团队项目(2018GXNSFGA281001)

详细信息
    作者简介:

    李柯蒙(1998-),女,硕士研究生,主要研究方向为固体废弃物资源化利用。likemeng163@163.com

    通讯作者:

    肖河(1990-),男,讲师,主要研究方向为环境地球化学。xiaohe@glut.edu.cn

ELECTRON TRANSFER MECHANISM AND SPECTRAL EVOLUTION CHARACTERISTICS OF HUMIC ACID DURING PIG MANURE COMPOSTING

  • 摘要: 3D-EEM),探究了猪粪堆肥过程中HA和FA的化学结构变化以及对ETC的影响。结果表明:HA的ETC由堆肥初期10.06 μmol e-/g C增长至末期40.07 μmol e-/g C,FA的ETC由堆肥初期的15.36 μmol e-/g C增长至末期的69.73 μmol e-/g C,二者均随时间变化呈波动上升趋势,且EDC在电子转移中占主要地位。光谱分析表明,堆肥中的木质素类物质经堆肥化后会转变为聚合度高的腐殖质类物质,相比于堆肥初期,腐熟期时有机质的腐殖化程度和芳香化程度增大,相对分子质量也增高。类蛋白物质(组分C4)在堆肥过程中逐渐减少,易被微生物作为碳源利用从而转化为类腐殖质物质(组分C2),且C2是堆肥中较为稳定的组分。相关性分析表明:类蛋白质物质减少、腐殖化程度增加会使HA和FA的ETC增强,FA的电子转移能力更容易受到腐殖化程度的影响。
  • [1] 吴浩玮, 孙小淇, 梁博文,等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 39:1168-1176.
    [2] 张浩然, 魏晶晶, 王慧春. 生物质炭在畜禽粪便好氧堆肥中的应用研究进展[J]. 中国家禽, 2020, 42:83-87.
    [3] 陶金沙, 李正东, 刘福理,等. 添加小麦秸秆生物质炭对猪粪堆肥腐熟程度及温室气体排放的影响[J]. 土壤通报, 2014, 45:1233-1240.
    [4] 许晓玲, 呼世斌, 刘晋波,等. 蘑菇渣和畜禽粪便复配蚯蚓堆肥过程中理化指标和酶活性变化研究[J]. 环境工程, 2018, 36(7):122-127.
    [5] THURMAN E M, MALCOLM R L. Preparative isolation of aquatic humic substances[J]. Environmental Science & Technology, 1981, 15(4):463-466.
    [6] CHRISTENSEN J B, JENSEN D L, FILIP Z, et al. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater[J]. Water Research, 1998, 32(1):125-135.
    [7] ZHANG J, CHEN L, YIN H, et al. Mechanism study of humic acid functional groups for Cr(Ⅵ) retention:two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis[J]. Environmental Pollution, 2017, 225:86-92.
    [8] ZHAO X, HE X, XI B, et al. Response of humic-reducing microorganisms to the redox properties of humic substance during composting[J]. Waste Management, 2017, 70:37-44.
    [9] 栾富波, 谢丽, 李俊,等. 腐殖酸的氧化还原行为及其研究进展[J]. 化学通报, 2008, (11):833-837.
    [10] 杨浈, 姜杰. 合成腐殖酸氧化还原能力与光学性质探究[J]. 环境化学, 2015, 34(6):1134-1141.
    [11] 蔡茜茜, 袁勇, 胡佩,等. 腐殖质电化学特性及其介导的胞外电子传递研究进展[J]. 应用与环境生物学报, 2015, 21(6):996-1002.
    [12] 唐朱睿, 黄彩红, 高如泰,等. 胞外呼吸菌在污染物迁移与转化过程中的应用进展[J]. 农业资源与环境学报, 2017, 34(4):299-308.
    [13] WU C Y, ZHUANG L, ZHOU S G, et al. Humic substance-mediated reduction of iron(Ⅲ) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5[J]. Microbial Biotechnology, 2013, 6(2):141-149.
    [14] LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590):445-448.
    [15] SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environmental Science & Technology, 1998, 32(19):372-372.
    [16] 占新华, 周立祥, 沈其荣,等. 污泥堆肥过程中水溶性有机物光谱学变化特征[J]. 环境科学学报, 2001:470-474.
    [17] SOUZA C, AMARAL SOBRINHO N, LIMA E S A, et al. Relation between changes in organic matter structure of poultry litter and heavy metals solubility during composting[J]. Journal of Environmental Management, 2019, 247:291-298.
    [18] ABOUELWAFA R, AMIR S, SOUABI S, et al. The fulvic acid fraction as it changes in the mature phase of vegetable oil-mill sludge and domestic waste composting[J]. Bioresource Technology, 2008, 99(14):6112-6118.
    [19] 赵伟, 席北斗, 魏自民,等. 不同原料堆肥胡敏酸的荧光特性[J]. 环境科学研究, 2011, 24:1042-1046.
    [20] BARJE F, EL FELS L, EL HAJJOUJI H, et al. Molecular behaviour of humic acid-like substances during co-composting of olive mill waste and the organic part of municipal solid waste[J]. International Biodeterioration & Biodegradation, 2012, 74:17-23.
    [21] 张红玉. 厨余垃圾、猪粪和秸秆联合堆肥的腐熟度评价[J]. 环境工程, 2013, 31(增刊1):470-474.
    [22] 周文兵, 刘大会, 朱端卫,等. 不同调理剂对猪粪堆肥腐殖质特性及元素含量变化的影响[J]. 华中农业大学学报, 2005,24(6):599-603.
    [23] YUAN Y, XI B, HE X, et al. Compost-derived humic acids as regulators for reductive degradation of nitrobenzene[J]. Journal of Hazardous Materials, 2017, 339:378-384.
    [24] HE X S, XI B D, CUI D Y, et al. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting[J]. Journal of Hazardous Materials, 2014, 268:256-263.
    [25] 唐朱睿, 席北斗, 檀文炳,等. 市政污泥堆肥过程胡敏酸电子转移能力的演变规律[J]. 环境化学, 2018, 37(4):689-697.
    [26] 唐朱睿, 黄彩红, 檀文炳,等. 基于电化学方法研究猪粪堆肥过程溶解性有机物电子转移能力演变规律[J]. 分析化学, 2018, 46(3):422-431.
    [27] EL Hajjouji H, FAKHAREDINE N, AIT BADDI G, et al. Treatment of olive mill waste-water by aerobic biodegradation:an analytical study using gel permeation chromatography, ultraviolet-visible and Fourier transform infrared spectroscopy[J]. Bioresource Technology, 2007, 98(18):3513-3520.
    [28] GAO W, GUO-DI Z, GAO D, et al. Transformation of organic matter during thermophilic composting of pig manure[J]. Environmental Science, 2006, 27(5):986-990.
    [29] 唐朱睿. 不同物料堆肥有机物电子转移机制研究[D].桂林:桂林理工大学, 2018.
    [30] 余旭芳, 周俊, 任兰天,等. 小麦秸秆堆肥水溶性有机物的结构和组成演变[J]. 光谱学与光谱分析, 2021, 41:1199-1204.
    [31] 李丽, 檀文炳, 王国安,等. 腐殖质电子传递机制及其环境效应研究进展[J]. 环境化学, 2016, 35(2):254-266.
    [32] 袁英, 何小松, 席北斗,等. 腐殖质氧化还原和电子转移特性研究进展[J]. 环境化学, 2014, 33(12):2048-2057.
    [33] MA L, DU Y, CHEN S, et al. Highly efficient removal of Cr(Ⅵ) from aqueous solution by pinecone biochar supported nanoscale zero-valent iron coupling with Shewanella oneidensis MR-1[J]. Chemosphere, 2021, 287(Pt 2):132184.
    [34] YANG C, HOU L X, XI B D, et al. Contribution of redox-active properties of compost-derived humic substances in hematite bioreduction[J]. Chinese Chemical Letters, 2021.
    [35] NISHIJIMA W, SPEITEL G E. Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon[J]. Chemosphere, 2004, 56(2):113-119.
    [36] 周立祥. 固体废物处理处置与资源化[M]. 北京:中国农业出版社, 2007.
    [37] WANG L, WU F, ZHANG R, et al. Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau[J]. Journal of Environmental Sciences, 2009, 21(5):581-588.
    [38] 赵越, 魏雨泉, 李洋,等. 不同物料堆肥腐熟程度的紫外-可见光谱特性表征[J]. 光谱学与光谱分析, 2015, 35:961-965.
    [39] BIKOVENS O, DIZHBITE T, TELYSHEVA G. Characterisation of humic substances formed during co-composting of grass and wood wastes with animal grease[J]. Environmental Technology, 2012, 33(10/11/12):1427-1433.
    [40] YANG Y, DU W, CUI Z, et al. Spectroscopic characteristics of dissolved organic matter during pig manure composting with bean dregs and biochar amendments[J]. Microchemical Journal, 2020, 158:105226.
    [41] 夏璇. 生物炭对鸡粪好氧堆肥中养分含量及腐殖化的影响研究[D].重庆:重庆大学, 2019.
    [42] 栾润宇, 高珊, 徐应明,等. 不同钝化剂对鸡粪堆肥重金属钝化效果及其腐熟度指标的影响[J]. 环境科学, 2020, 41(1):469-478.
    [43] 宋海燕, 尹友谊, 宋建中. 不同来源腐殖酸的化学组成与结构研究[J]. 华南师范大学学报(自然科学版), 2009(1):61-66.
    [44] 张彩华. 光谱法在腐殖质研究中的应用进展[J]. 光谱实验室, 2011, 28(2):693-696.
    [45] 唐璐. 不同堆肥条件对堆肥过程中碳素损失及腐殖质形成的影响研究[D].杭州:杭州师范大学, 2016.
    [46] 张雪辰, 邓双, 杨密密,等. 畜禽粪便堆腐过程中有机碳组分与腐熟指标的变化[J]. 环境科学学报, 2014, 34(10):2559-2565.
    [47] 王宇蕴, 赵兵, 马丽婷,等. 堆肥腐殖化过程及微生物驱动机制[J]. 生物技术通报, 2022, 38(5):22-28.
    [48] 宋彩红, 张亚丽, 李鸣晓,等. 抗酸化微生物复合菌系对餐厨垃圾堆肥腐殖质组分光谱学性质的影响[J]. 光谱学与光谱分析, 2019, 39:3533-3539.
    [49] YAMASHITA Y, PANTON A, MAHAFFEY C, et al. Assessing the spatial and temporal variability of dissolved organic matter in Liverpool Bay using excitation-emission matrix fluorescence and parallel factor analysis[J]. Ocean Dynamics, 2011, 61(5):569-579.
    [50] BAGHOTH S A, SHARMA S K, AMY G I. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45(2):797-809.
    [51] 周倩倩, 苏荣国, 白莹,等. 舟山渔场有色溶解有机物(CDOM)的三维荧光-平行因子分析[J]. 环境科学, 2015, 36:163-171.
    [52] WU J, HUA Z, HE P J, et al. Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis[J]. Water Research, 2011, 45(4):1711-1719.
    [53] 刘堰杨, 秦纪洪, 刘琛,等. 基于三维荧光及平行因子分析的川西高原河流水体CDOM特征[J]. 环境科学, 2018, 39(2):720-728.
    [54] MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1):38-48.
  • 加载中
计量
  • 文章访问数:  195
  • HTML全文浏览量:  20
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-21
  • 网络出版日期:  2023-03-23

目录

    /

    返回文章
    返回