INFLUENCE OF ADMIXTURES ON STRENGTH AND HYDRATION PERFORMANCE OF STEEL SLAG & DESULFURIZATION ASH BASED CEMENTITIOUS MATERIALS
-
摘要: 针对钢渣-脱硫灰基胶凝材料存在早期强度低的问题,研究不同早强剂对钢渣-脱硫灰基胶凝材料抗压强度及水化性能影响。结果表明:当脱硫灰掺量为15%,3 d抗压强度为3.65 MPa,比空白样降低了48.95%。利用生石灰、氯化钙、甲酸钙、硅灰、硫酸铝复合早强剂改性钢渣-脱硫灰基胶凝材料,其3 d抗压强度可达到17.89 MPa,是空白组试件的2.45倍,满足GB 175—2007《通用硅酸盐水泥》中复合硅酸盐水泥42.5级水泥抗压强度指标。通过XRD、SEM、FT-IR、XPS和DTG分析发现,水化产物主要是单硫型水化硫型硫铝钙、水化氯铝酸钙、水化硅酸钙和弗里德尔盐。Abstract: Aiming at the problem of low early strength of steel slag-desulfurized ash-based cementitious materials, the effects of different early strength agents on the compressive strength and hydration performance of steel slag-desulfurized ash-based cementitious materials were studied. Experimental research results showed that when the desulfurization ash content was 15%, the 3-day compressive strength was 3.65 MPa, which was 48.95% lower than the blank sample. Using quicklime, calcium chloride, calcium formate, silica fume, aluminum sulfate and other composite early-strength agents to modify steel slag-desulfurization ash-based cementitious materials, the 3-day compressive strength reached 17.89 MPa, which was 4.90 times that of the blank sample, and met the cement compressive strength requirements of composite Portland cement 42.5 grade, specified in China’s national standard, GB 175—2007. Through XRD, SEM, FI-RT, XPS and DTG tests, it was found that the main hydration products of cementitious materials were monosulfur hydrated calcium aluminum sulfide, hydrated calcium chloroaluminate, and hydrated calcium silicate, and Friedel’s salt.
-
[1] 王会刚,彭犇,岳昌盛,等.钢渣改性研究进展及展望[J].环境工程,2020,38(5):133-137,106. [2] 任江涛.浅析我国钢渣综合利用及其标准化工作进展[N].世界金属导报,2019-07-09(12). [3] 董培鑫,宋仁峰,高谦,等.利用钢渣微粉开发鞍钢矿山全尾砂充填胶凝材料研究[J].矿业研究与开发,2016,36(1):38-41. [4] 崔贺龙. 化学激发钢渣基胶凝材料的强度与体积稳定性[D].西安:西安建筑科技大学,2020. [5] 崔孝炜,倪文,狄燕清.钢渣矿渣基全固废胶凝材料的化学活化[J].硅酸盐通报,2018,37(4):1411-1417. [6] 温建. 钢渣的活性激发及资源化利用[D].长沙:中南大学,2013. [7] 姚建可,杨利群,蒋年平,等.在Ca(OH)2碱性条件下亚硫酸钙对矿渣的激发作用研究[J].材料科学与工程,2002,20(1):38-40. [8] 袁润章. 胶凝材料学[M].武汉:武汉理工大学出版社,2014. [9] 卫国强. 激发剂对不同掺量粉煤灰复合胶凝材料强度的影响研究[D].西安:西安建筑科技大学,2009. [10] MOHAMED Heikal. Effect of calcium formate as an accelerator on the physicochemical and mechanical properties of pozzolanic cement pastes[J]. Cement and Concrete Research, 2003, 34(6):1051-1056. [11] 马保国,朱艳超,胡迪,等.甲酸钙对硫铝酸盐水泥早期水化过程的影响[J].功能材料,2013,44(12):1763-1767. [12] BENSTED J.Early strength behavior of Portland cement in water,calcium chloride and calcium formate[J].Silicates Industeiels,1980,45:67-69. [13] WANG S P. Synthesis of calcium silicate hydrate based on steel slag with various alkalinities[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2014, 29(4):789-794. [14] YUE Y F,WANG J J,BASHEER P A M,et al.Raman spectroscopic investigation of Friedel's salt[J].Cement and Concrete Composites,2018,86:306. [15] SURYAVANSHI A K,SCANTLEBURY J D,LYON S B.Mechanism of Friedel's salt formation in cements rich in tri-calcium aluminate[J].Cement and Concrete Research,1996,26(5):717-727. [16] LEON Black et al. X-ray photoelectron spectroscopic investigation of nanocrystalline calcium silicate hydrates synthesised by reactive milling[J]. Cement and Concrete Research, 2006, 36(6):1023-1031. [17] BLACK L, GARBEV K, BEUCHLE G, et al. X-ray photoelectron spectroscopic investigation of nanocrystalline calcium silicate hydrates synthesised by reactive milling[J].Cement and Concrete Research, 2006, 36(6):1023-1031. [18] 杨南如, 岳文海. 无机非金属材料图谱手册[M]. 武汉:武汉工业大学出版社, 2000:250-251. [19] 祝丽萍. 赤泥-矿渣胶结剂制备全尾砂膏体充填料[D]. 北京:北京科技大学, 2012:78-81. 期刊类型引用(17)
1. 韦必颖,成建梅,苏晓煜,程天舜. 深圳市2015~2021年雨源型河流水质时空变化及其对降雨的响应. 环境科学. 2024(02): 780-791 . 百度学术
2. 张文博,余香英,薛弘涛,刘晋涛,蒋婧媛,熊津晶. 基于APCS-MLR模型的九洲江广东段不同水期水质变化特征及污染来源解析. 农业环境科学学报. 2024(02): 401-410 . 百度学术
3. 刘菲,李翀,聂中林,黄适尔,徐赫姝,吴涵,陈亚松,张驰,齐维晓. 污水厂尾水对受纳水体中消毒副产物(DBPs)时空分布特征的影响. 环境科学学报. 2024(03): 105-116 . 百度学术
4. 周游,冯芳,金爽,任佳慧,史千年. 京杭大运河水质时空分布特征及驱动因素. 环境科学学报. 2024(06): 174-184 . 百度学术
5. 叶方琪,计勇,惠源,章晨晖,成玉祥. 基于3种水质指数方法的鄱阳湖五河水质分析与评价. 人民珠江. 2024(07): 84-91 . 百度学术
6. 高雯媛,邹霖,朱俊毅,肖童觉,于奕,沈健林. 湖南省地表水水质时空变化特征及驱动因子分析. 环境工程. 2024(08): 17-24 . 本站查看
7. 耿姣,王洋,胡术刚,魏岩洁,孙菲,袁鹏. 基于WQI的平原河网地区河流水质评价与时空变化分析. 环境工程. 2023(06): 187-193+209 . 本站查看
8. 杨长明,尉岚,杨阳,王育来. 污水厂尾水补水对受纳水体氮磷形态与DOM时空分布特征的影响. 环境科学研究. 2023(09): 1705-1715 . 百度学术
9. 刘文强,郁达伟,李昆,郑利兵,朱利英,桂双林,魏源送. 降雨特征对赣江南昌段河流断面不同水期的水质影响分析. 环境工程. 2023(08): 91-99 . 本站查看
10. 程敏. 农业面源污染对农村地表水的影响与对策. 化工设计通讯. 2023(12): 185-187 . 百度学术
11. 陈振宇,闫祯,师艳丽,平令文. 河流污染物空间分布及污染源分析. 水利技术监督. 2022(02): 176-181 . 百度学术
12. 王刚,沃玉报,毛劲乔,肖洋,彭吉荣. 基于两步聚类的城市闸控河流水质时空变异特征研究. 环境工程. 2022(01): 117-122+160 . 本站查看
13. 白景锋,王缘圆. 南水北调中线河南段水质时空变化及影响因素. 河南水利与南水北调. 2022(10): 41-43 . 百度学术
14. 吴东少,高伟,陈岩,张远. 基于改进LAM模型的河流污染源解析方法与例证. 环境科学学报. 2022(12): 376-383 . 百度学术
15. 饶梦,伊学农. 祊河流域水质时空变化特征. 中国水运(下半月). 2022(10): 64-66+69 . 百度学术
16. 饶梦,伊学农. 祊河流域水质时空变化特征. 中国水运. 2022(20): 64-66+69 . 百度学术
17. 李璐汐,孟玉川,谢姝,蒋芳婷,宋泓苇. 基于不同评价方法的猴子岩水电站水质研究. 环境科学与技术. 2021(S2): 299-307 . 百度学术
其他类型引用(9)
-

计量
- 文章访问数: 300
- HTML全文浏览量: 20
- PDF下载量: 6
- 被引次数: 26