A STUDY ON CARBON PEAKING PATHS IN HENAN, CHINA BASED ON LASSO REGRESSION-BP NEURAL NETWORK MODEL
-
摘要: 为探索河南省碳达峰路径,满足河南省碳达峰战略需求,选取河南省2001—2020年社会、经济、能耗、资源4个维度的12个指标,使用Lasso-BP神经网络方法,建立河南省碳排放量预测模型。基于12个指标数据的回归分析,设计了6条发展路径,对河南省2021—2035年的碳排放量进行预测。结果表明:1)12个维度的因素中,影响碳达峰的6大关键因素为煤炭消费占比、单位GDP能耗、森林覆盖率、能源消费总量、第二产业GDP比重和私人汽车拥有量;2)追求单因素发展的路径1—4均无法在2030年实现碳达峰;在路径5、6下,河南省将于2029年碳达峰,相较于路径5,路径6的峰值排放量低2.53 Mt,峰值为510.91 Mt CO2;3)为实现碳达峰,在"十四五"和"十五五"阶段,应分别将煤炭消费占比、单位GDP能耗、森林覆盖率、能源消费总量、第二产业GDP比重、私人汽车拥有量的年均增长率控制在-4.0%和-5.0%、-3.5%和-4.0%、2.0%和3.0%、0.5%和0.4%、-1.5%和-2.0%、7.5%和7.0%。Abstract: To explore the path to carbon emission peaking of Henan, China and meet the strategic need of the local authorities, in this paper, the data of twelve factors of social, economic, energy consumption, and resources in Henan from 2001 to 2020 were selected, and the Lasso-BP neural network method was used to establish a prediction model of carbon emission in Henan province. Based on the regression analysis of the data of the 12 indexes, six different development paths were designed to predict the carbon emission of Henan from 2021 to 2035. The results showed that: 1) among the twelve factors, six key factors affecting carbon peaking were the share of coal consumption, energy consumption per unit of GDP, forest coverage, total energy consumption, the share of secondary industry GDP, and private car ownership; 2) paths 1 to 4 pursuing single-factor development were all unable to achieve carbon peaking in 2030. Under paths 5 and 6, Henan would reach peak carbon in 2029. Compared with path 5, the peak CO2 emission of path 6 was 2.53 Mt lower, with a peak of 510.91 Mt CO2; 3) to achieve the carbon emission peak, the average annual growth rates of coal consumption, energy consumption per unit of GDP, forest coverage, total energy consumption, the share of secondary industry in GDP, and private car ownership should be controlled at -4.0% and -5.0%, -3.5% and -4.0%, 2.0% and 3.0%, 0.5% and 0.4%, -1.5% and -2.0%,7.5% and 7.0%, during the 14th Five-Year Plan and the 15th Five-Year Plan Period respectively.
-
Key words:
- carbon peak /
- Lasso regression /
- BP neural network /
- pathway study /
- carbon emission prediction
-
[1] 薛成杰,方战强.土壤修复产业碳达峰碳中和路径研究[J/OL].环境工程:1-10[2022-06-06].http://kns.cnki.net/kcms/detail/11.2097.X.20220209.1734.010.html. [2] MARGARETE R, THOMAS G.Anthropogenic climate change:the impact of the global carbon budget[J]. Theoretical and Applied Climatology,2021,146(1/2):713-721. [3] 渠慎宁,郭朝先.基于STIRPAT模型的中国碳排放峰值预测研究[J].中国人口·资源与环境,2010,20(12):10-15. [4] 陆玉玲.基于GIOWA算子的我国碳排放量的组合预测研究[J].黑龙江工业学院学报(综合版),2020,20(4):108-114. [5] 徐夏楠,王莹.河南省工业领域碳排放峰值研究[J].当代经济,2018(19):84-88. [6] 张志高,刘青利,张翠贞,等.河南省农业碳排放动态变化及预测研究[J].南方农业,2017,11(22):24-28. [7] 孙晓林,张伟强,杜敬华,等.碳中和愿景下的河南资源环境领域科技发展战略[J].能源与环保,2021,43(6):1-8. [8] 刘晓蝶,孟祥瑞,王向前.基于Lasso-BP神经网络模型的江苏省碳排放预测[J].黑龙江工业学院学报(综合版),2021,21(8):60-65. [9] 雷廷,贾军元,田福金,等.基于BP神经网络预测岩石导热系数[J].世界地质,2021,40(1):131-139. [10] 陈红瑜,崔刚. 《河南统计年鉴-2021》[M]. 北京:中国统计出版社,2021,5-6. [11] 付凌晖,刘爱华. 《中国统计年鉴-2021》[M]. 北京:中国统计出版社,2021,4-5. [12] 关大博,刘竹,单钰理,等. Carbon emission accounts & datasets.CEADs中国碳核算数据库:河南省排放清单[EB/OL].(2020-11-03)[2021-06-28].http://www.ceads.net.cn. [13] 熊彦,康伦慧,石卉.循环经济在生态环境保护中的作用[J].环境工程,2021,39(5):281. [14] 熊星月,李喜梅,何静,等.河南省森林旅游资源保护及利用策略研究[J].黑龙江农业科学,2021(4):119-124. [15] 郭利华,李立伟,石志隆,等.河南省森林资源发展空间及潜力分析[J].河南林业科技,2017,37(4):43-45. [16] 王俊娟.河南省碳排放、能源消费及影响因素研究:基于产业结构优化的实证分析[J].经济研究导刊,2022(12):134-137. [17] 侯正猛,熊鹰,刘建华,等.河南省碳达峰与碳中和战略、技术路线和行动方案[J].工程科学与技术,2022,54(1):23-36.
点击查看大图
计量
- 文章访问数: 254
- HTML全文浏览量: 36
- PDF下载量: 5
- 被引次数: 0