中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有球形催化界面的MnCeOx/P84催化滤布的NOx脱除性能

倪茂森 杨波 顾秋香 汪振辉 黄琼 陈敏东

倪茂森, 杨波, 顾秋香, 汪振辉, 黄琼, 陈敏东. 具有球形催化界面的MnCeOx/P84催化滤布的NOx脱除性能[J]. 环境工程, 2022, 40(12): 157-164. doi: 10.13205/j.hjgc.202212021
引用本文: 倪茂森, 杨波, 顾秋香, 汪振辉, 黄琼, 陈敏东. 具有球形催化界面的MnCeOx/P84催化滤布的NOx脱除性能[J]. 环境工程, 2022, 40(12): 157-164. doi: 10.13205/j.hjgc.202212021
NI Maosen, YANG Bo, GU Qiuxiang, WANG Zhenhui, HUANG Qiong, CHEN Mindong. REMOVAL PERFORMANCE OVER MnCeOx/P84 CATALYTIC FILTER WITH SPHERICAL CATALYTIC INTERFACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 157-164. doi: 10.13205/j.hjgc.202212021
Citation: NI Maosen, YANG Bo, GU Qiuxiang, WANG Zhenhui, HUANG Qiong, CHEN Mindong. REMOVAL PERFORMANCE OVER MnCeOx/P84 CATALYTIC FILTER WITH SPHERICAL CATALYTIC INTERFACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 157-164. doi: 10.13205/j.hjgc.202212021

具有球形催化界面的MnCeOx/P84催化滤布的NOx脱除性能

doi: 10.13205/j.hjgc.202212021
基金项目: 

国家自然科学基金(51902166)

江苏省自然科学基金(BK20190786)

详细信息
    作者简介:

    倪茂森(1998-),男,硕士,主要从事工业烟气脱硝催化材料的研究。nimaosen369@foxmail.com

    通讯作者:

    杨波(1987-),男,博士,副教授,主要从事大气污染控制与环境催化材料研究。yangbo1987@nuist.edu.cn

REMOVAL PERFORMANCE OVER MnCeOx/P84 CATALYTIC FILTER WITH SPHERICAL CATALYTIC INTERFACE

  • 摘要: 催化滤布可同时去除烟气中的粉尘颗粒和NOx,满足水泥等行业NOx脱除的迫切需求。而催化滤布中催化界面的形貌会显著影响其脱硝性能。制备了具有球形催化界面的MnCeOx/P84催化滤布(α-MnCeOx/P84),并考察其NOx脱除性能。结果表明:当MnCeOx负载量为60 g/m2时,α-MnCeOx/P84在130 ℃时NOx脱除率为86.9%,160~190 ℃时NOx脱除率>97%。同时,α-MnCeOx/P84具有较好的抗SO2性能和稳定性,通入体积分数为0.003%的SO2后,在190 ℃下,其NOx脱除率达到83%左右;停止通入SO2后,α-MnCeOx/P84的NOx脱除率上升并稳定在93%左右。且经过200 h的脱硝反应测试后,α-MnCeOx/P84的脱硝活性与催化剂负载量未下降。表征分析结果表明,α-MnCeOx/P84中球形MnCeOx活性组分以弱结晶形式存在,紧密地包裹在滤料纤维表面,且分散均匀;中孔是MnCeOx催化剂的主要孔结构,能够为催化反应的进行提供通道。H2-TPR与Insitu DRIFTS分析进一步表明,α-MnCeOx/P84在100~200 ℃有良好的氧化还原能力,且具有丰富的Lewis和Brnsted酸位,为其优越的低温NH3-SCR脱硝性能提供了重要保障。具有球形催化界面的MnCeOx/P84催化滤布具有低负载量、高稳定性的特点,为滤料除尘脱硝技术的推广应用提供参考。
  • [1] HUANG R J, ZHANG Y L, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521):218-222.
    [2] BONINGARI T, SMIRNIOTIS P G. Impact of nitrogen oxides on the environment and human health:Mn-based materials for the NOx abatement[J]. Current Opinion in Chemical Engineering, 2016,(13):133-141.
    [3] 毕谆,周红刚.PM2.5引起的肺部疾病及其作用机制的研究进展[J].环境工程,2016,34(增刊1):496-499.
    [4] XU J Q, CHEN G R, GUO F, et al. Development of wide-temperature vanadium-based catalysts for selective catalytic reducing of NOx with ammonia:review[J]. Chemical Engineering Journal, 2018,353:507-518.
    [5] 廖玉云,王梦瑜,曹宗平, 等.水泥窑SCR烟气脱硝催化剂的选型与应用[J].中国水泥,2016(5):82-86.
    [6] YANG B, HUANG Q, CHEN M D, et al. Mn-Ce-Nb-Ox/P84 catalytic filters prepared by a novel method for simultaneous removal of particulates and NO[J]. Journal of Rare Earths, 2019, 37(3):273-281.
    [7] 国务院关于印发打赢蓝天保卫战三年行动计划的通知[J]. 中华人民共和国国务院公报, 2018(20):40-52.
    [8] 环境保护部, 国家质量监督检验检疫总局. 水泥工业大气污染物排放标准:GB 4915-2013[S].北京:中国环境科学出版社,2013.
    [9] ZHENG Y Y, ZHANG Y B, WANG X, et al. MnO2 catalysts uniformly decorated on polyphenylene sulfide filter felt by a polypyrrole-assisted method for use in the selective catalytic reduction of NO with NH3[J]. RSC Adv, 2014, 4(103):59242-59247.
    [10] YANG B, ZHENG D H, SHEN Y S, et al. Influencing factors on low-temperature deNOx performance of Mn-La-Ce-Ni-Ox/PPS catalytic filters applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2015, 24:148-152.
    [11] 杨波, 沈岳松, 邱云顺, 等. Mn-La-Ce-Ni-Ox/P84一体化滤布的低温脱硝影响因素[J]. 环境工程学报, 2016, 10(11):6583-6587.
    [12] YANG B, SHEN Y S, SU Y, et al. Removal characteristics of nitrogen oxides and particulates of a novel Mn-Ce-Nb-Ox/P84 catalytic filter applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2017,50:133-141.
    [13] 付彬彬, 郑玉婴, 陈健, 等. 氧化还原沉淀法制备Mn-Ce-Co-Ox/PPS滤料及其低温SCR活性[J]. 燃料化学学报, 2017, 45(6):731-739.
    [14] LIU M C, JING D W, ZHOU Z H, et al. Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation[J]. Nat Commun, 2013, 4(1):2278-2286.
    [15] PAN L, WANG S B, ZOU J J, et al. Ti3+-defected and V-doped TiO2 quantum dots loaded on MCM-41[J]. Chem Commun (Camb), 2014, 50(8):988-990.
    [16] GAO F Y, TANG X L, YI H H, et al. In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts[J]. Chemical Engineering Journal, 2017,322:525-537.
    [17] LI Y, LI Y P, WAN Y, et al. Structure-performance relationships of MnO2 nanocatalyst for the low-temperature SCR removal of NOx under ammonia[J]. RSC Advances, 2016, 6(60):54926-54937.
    [18] LIU C, DING R Y, XIE F C. Facile synthesis of manganese dioxide nanoparticles for efficient removal of aqueous As(Ⅲ)[J]. Journal of Chemical & Engineering Data, 2020, 65(8):3988-3997.
    [19] 梅超强,杨波,戴毅, 等.Co改性α-MnO2催化剂用于低温同时催化脱除烟气中的NO和C6H5Cl[J/OL].南京工业大学学报(自然科学版):1-7[2022-04-26].http://kns.cnki.net/kcms/detail/32.1670.N.20220412.1036.010.html.
    [20] LI Y R, GUO Y Y, XIONG J, et al. The roles of sulfur-containing species in the selective catalytic reduction of NO with NH3 over activated carbon[J]. Industrial & Engineering Chemistry Research, 2016, 55(48):12341-12349.
    [21] 陈健, 郑玉婴, 张延兵, 等. 氧化还原沉淀法制备MnO2/MWCNTs催化剂及其低温SCR活性[J]. 无机材料学报,2016,31(12):1347-1354.
    [22] KANG M, PARK E, KIM J, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A:General, 2007, 327(2):261-269.
    [23] QI G S, YANG R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. Journal of Catalysis, 2003, 217(2):434-441.
    [24] LIU L J, SU S, XU K, et al. Insights into the highly efficient Co modified MnSm/Ti catalyst for selective catalytic reduction of NOx with NH3 at low temperature[J]. Fuel, 2019, 255:115798.
    [25] DENG S C, MENG T T, XU B L, et al. Advanced MnOx/TiO2 catalyst with preferentially exposed anatase {001} facet for low-temperature SCR of NO[J]. Acs Catalysis, 2016, 6(9):5807-5815.
    [26] TANG X L, HAO J M, XU W G, et al. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods[J]. Catalysis Communications, 2007, 8(3):329-334.
    [27] CHAO Z X, WANG Y F, JAKOBSEN J P, et al. Numerical investigation of the sorption enhanced steam methane reforming in a fluidized bed reactor[J]. Energy Procedia, 2012, 26:15-21.
    [28] LIU X L, GUO J X, CHU Y H, et al. Desulfurization performance of iron supported on activated carbon[J]. Fuel, 2014, 123:93-100.
    [29] 唐晓龙. 低温选择性催化还原NOx技术及反应机理[M]. 北京:冶金工业出版社, 2007.
    [30] ZHANG D S, ZHANG L, FANG C, et al. MnOx-CeOx/CNTs pyridine-thermally prepared via a novel in situ deposition strategy for selective catalytic reduction of NO with NH3[J]. Rsc Advances, 2013, 3(23):8811-8819.
    [31] CHENG F, ZHANG D S, SHI L Y, et al. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3[J]. Catalysis Science & Technology, 2013, 3(3):803-811.
    [32] 樊荣, 杨波, 黄琼, 等. Nb改性对MnCe0.2Ox低温SCR抗硫和水热稳定性能的影响[J]. 南京工业大学学报(自然科学版), 2020,42(6):751-759.
    [33] ZHA K W, CAI S X, HANG H, et al. In situ DRIFTs investigation of promotional effects of Tungsten on MnOx-CeO2/meso-TiO2 catalysts for NOx reduction[J]. The Journal of Physical Chemistry C, 2017, 121(45):25243-25254.
    [34] FANG N J, GUO J X, SHU S, et al. Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR[J]. The Chemical Engineering Journal, 2017, 325:114-123.
    [35] LI G, WANG B D, WANG Z C, et al. Reaction mechanism of low-temperature selective catalytic reduction of NOx over Fe-Mn oxides supported on fly-ash-derived SBA-15 molecular sieves:structure-activity relationships and in situ DRIFT analysis[J]. The Journal of Physical Chemistry, C Nanomaterials and Interfaces, 2018, 122(35):20210-20231.
    [36] ZHA K W, KANG L, FENG G,et al. Improved NOx reduction in the presence of alkali metals by using hollandite Mn-Ti oxide promoted Cu-SAPO-34 catalysts[J]. Environmental Science Nano, 2018(5):1408-1419.
    [37] PENG Y, WANG C Z, LI J H. Structure-activity relationship of VOx/CeO2 nanorod for NO removal with ammonia[J]. Applied Catalysis B Environmental, 2014, 144:538-546.
    [38] ZHU J, GAO F, DONG L H, et al. Studies on surface structure of MxOy/MoO3/CeO2 system (M=Ni, Cu, Fe) and its influence on SCR of NO by NH3[J]. Applied Catalysis B:Environmental, 2010, 95(1/2):144-152.
    [39] QUAN X, YANG W J, CUI S T, et al. Sulfur resistance of Ce-Mn/TiO2 catalysts for low-temperature NH3-SCR[J]. Royal Society Open Science, 2018, 5(3):171846-171855.
    [40] 张茹杰,王夫美,白鹏飞, 等.球磨制备低钒基催化剂的NH3-SCR脱硝性能[J].环境工程,2021,39(3):103-110.
    [41] 沈伯雄, 刘亭. 低温NH3-SCR催化剂MnOx-CeOx/ACF的SO2中毒机理[J]. 物理化学学报, 2010,26(11):3009-3016.
  • 加载中
计量
  • 文章访问数:  57
  • HTML全文浏览量:  11
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-11
  • 网络出版日期:  2023-03-23

目录

    /

    返回文章
    返回