A WATER-ENERGY-CARBON FOOTPRINT NEXUS MODEL FOR LARGE SPORTS VENUES AND ITS UNCERTAINTY ANALYSIS
-
摘要: 为构建适用于体育场馆类微观建筑水系统的水-能-碳足迹关联模型,分析了各类体育场馆的特点,采用排放因子法对体育场馆开展包括生活水系统、空调水系统及体育水系统在内的模型搭建,解析了取水、给水、用水及排水的能源消耗与碳排放过程。采用数据质量评价与随机分析相结合的方法进行数值不确定性分析;采用情景分析法与敏感性分析法进行情景不确定性分析,识别并量化影响因素。以2022年北京冬奥会延庆赛区的国家雪车雪橇中心场馆为例的分析结果表明:水在全生命周期中制冰项与供暖项碳排放量最高,分别为161.2,114.3 t CO2,在先进技术+清洁能源情景下可减少65.4%的碳排放量,变异系数为0.183~0.187。使用绿色电力、采用节水器具、中水回用、提高能源利用效率等措施可达到稳定的减排效果。Abstract: A water-energy-carbon footprint nexus model was proposed to be used for calculating the energy consumption and carbon footprint of sports venues. Meanwhile, the uncertainty of the water system carbon footprint of sports venues was analyzed, and the definition of the characteristic emission factors was proposed. By analyzing the characteristics of most kinds of sports venues, the emission factor method was adopted in the model including domestic water system, air conditioning water system and sports water system of sports venues, in which the energy consumption and carbon emission of water intake, water supply, water use and drainage were analyzed. The numerical uncertainty analysis was carried out by combining data quality evaluation with random analysis. The scenario uncertainty analysis was performed by scenario analysis and sensitivity analysis for identifying and quantifying the influencing factors. A case study of the National Sliding Centre in Yanqing Area of 2022 Beijing Winter Olympic Games was conducted. The results showed that the carbon emissions of ice making and heating were the highest at 161.2 t CO2 and 114.3 t CO2 respectively in the operation stage. The carbon emissions were reduced by 65.4% under the scenario of advanced technology+clean energy, and the coefficient of variation was 0.183~0.187. The research indicated the measures of adopting green electricity, water-saving sanitary wares, recycling water and improving energy efficiency achieved stable emission reduction effect.
-
[1] 中华人民共和国水利部. 中国水资源公报.2017[M]. 北京:中国水利水电出版社,2018. [2] 中华人民共和国水利部. 中国水资源公报.2018[M]. 北京:中国水利水电出版社,2019. [3] 中华人民共和国水利部. 中国水资源公报.2019[M]. 北京:中国水利水电出版社,2020. [4] 臧宏宽, 杨威杉, 张静, 等. 京津中国冀城市群二氧化碳排放达峰研究[J]. 环境工程, 2020, 38(11):19-24,77. [5] CHEN S Q, CHEN B. Urban energy-water nexus:a network perspective[J]. Applied Energy, 2016,184:905-914. [6] ALEXANDER T D, MELISSA M B. The regional energy & water supply scenarios (REWSS) model, part Ⅰ:framework, procedure, and validation[J]. Sustainable Energy Technologies and Assessments, 2014, 7:227-236. [7] 余娇.基于"水-能-碳"关联的郑州市水系统碳排放研究[D].郑州:华北水利水电大学, 2020. [8] VALEK A M, SUŠNIK J, GRAFAKOS S. Quantification of the urban water-energy nexus in México City, México, with an assessment of water-system related carbon emissions[J]. Science of the Total Environment, 2017, 590:258-268. [9] 吴美玲.山西省水-能-碳排放关系研究和政策协同控制[D].北京:中国石油大学(北京), 2019. [10] 孟凡鑫, 刘耕源, 杨志峰, 等. 城市能-水-碳多要素环境管理的研究现状与问题[C]//.中国管理科学学会环境管理专业委员会2017年年会论文集, 2017:9-16. [11] 黄娜, 王洪涛, 范辞冬,等. 基于不确定度和敏感度分析的LCA数据质量评估与控制方法[J]. 环境科学学报, 2012,32(6):1529-1536. [12] FENG H B, ZHAO J F, ZHANG H N, et al. Thurairajah, uncertainties in whole-building life cycle assessment:a systematic review[J]. Journal of Building Engineering, 2022,50:104191. [13] 王婧婕, 张凯山.成都市居民生活方式碳排放的不确定性分析[J].环境工程, 2016,34(增刊1):926-930. [14] 姜珊.水-能源纽带关系解析与耦合模拟[D].北京:中国水利水电科学研究院, 2017. [15] 呼永锋, 梁梅, 张永祥,等.A2/O+MBR工艺运行效果与碳排放特征研究[J].中国环境科学, 2021,41(9):4439-4446. [16] 郝晓地, 王向阳, 曹达啟, 等. 污水有机物中化石碳排放CO2辨析[J]. 中国给水排水, 2018, 34(2):13-17. [17] 赵亚涛, 南新元, 贾爱迪.基于情景分析法的煤电行业碳排放峰值预测[J].环境工程, 2018,36(12):177-181. [18] HUIJBREGTS M A J, GILIJAMSE W, RAGAS A M J, et al. Evaluating uncertainty in environmental life-cycle assessment:a case study comparing two insulation options for a Dutch one-family dwelling[J]. Environmental Science and Technology, 2003, 37(11):2600-2608. [19] HONG J K, SHEN G Q, PENG Y, et al. Uncertainty analysis for measuring greenhouse gas emissions in the building construction phase:a case study in China[J]. Journal of Cleaner Production, 2016, 129:183-195. [20] ZHANG X C, WANG F L. Stochastic analysis of embodied emissions of building construction:a comparative case study in China[J]. Energy and Buildings, 2017, 151(sep.):574-584. [21] XIANG X Z, JIA S F. China's water-energy nexus:assessment of water-related energy use[J]. Resources, Conservation and Recycling, 2019, 144:32-38. [22] FAN Y P, GUO E H, ZHAI Y Z, et al. Life cycle energy analysis of reclaimed water reuse projects in Beijing[J]. Water Environment Research A Research Publication of the Water Environment Federation, 2017, 90(jan.):13-20. [23] 中华人民共和国生态环建部.2019年度减排项目中国区域电网基准线排放因子[EB/OL]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202012/t20201229_815386.shtml. 2020-12-29. [24] 朱永霞.社会水循环全过程能耗评价方法研究[D].北京:中国水利水电科学研究院, 2017. [25] 王明晖. 大型公建水系统碳排放量化评价及减排关键技术研究[D].济南:山东建筑大学, 2012.
点击查看大图
计量
- 文章访问数: 127
- HTML全文浏览量: 21
- PDF下载量: 3
- 被引次数: 0