EFFECTS OF DIMETHYL PHTHALATE ON VEGETATION-ACTIVATED SLUDGE PROCESS AND ITS REMOVAL PERFORMANCE
-
摘要: 为探索植物-活性污泥复合系统(vegetation-activated sludge process,V-ASP)对邻苯二甲酸二甲酯(dimethyl phthalate,DMP)的去除效果,设置了50 mg/L、5 mg/L、500 μg/L、50 μg/L、0 μg/L 5个进水浓度梯度的DMP,考察V-ASP中常规污染物出水浓度、植物和微生物菌群的变化,以及其对DMP的去除作用。结果表明:DMP对V-ASP去除常规污染物的影响不大,仅在DMP浓度≥500 μg/L时可提升V-ASP对TN的去除效果。进水浓度DMP为50 mg/L、5 mg/L、500 μg/L和50 μg/L时在V-ASP中的去除率分别为99.97%、99.51%、94.19%和83.68%。DMP在V-ASP中的主要去除途径为微生物分解代谢,植物吸收占比不超过1.12%。当进水DMP浓度达到5 mg/L时,V-ASP中植物生长受到明显抑制。高通量测序结果显示,DMP会对V-ASP中活性污泥和根际污泥的微生物多样性产生一定影响。微生物群落中Proteobacteria(变形菌门)的相对丰度最高,Rhodococcus(红球菌属)的相对丰度随DMP浓度的升高而增加。
-
关键词:
- 植物-活性污泥复合系统 /
- 邻苯二甲酸二甲酯 /
- 菌群结构
Abstract: To explore the removal of dimethyl phthalate (DMP) in a vegetation-activated sludge process (V-ASP), DMP with influent concentration gradients of 50 mg/L, 5 mg/L, 500 μg/L, 50 μg/L and 0 μg/L was set to investigate the effects of conventional pollutants effluent concentration, the changes of plant and microorganism and its removal efficiency. The results showed that DMP had little effect on the removal of conventional pollutants in V-ASP, and the removal efficiency of TN got improved when the concentration of DMP was greater than or equal to 500 μg/L. The removal rates of 50 mg/L, 5 mg/L, 500 μg/L and 50 μg/L DMP in V-ASP were 99.97%, 99.51%, 94.19% and 83.68%, respectively. The main removal pathway of DMP in V-ASP was found out to be microbial catabolism, and the proportion of DMP absorbed by plants was less than 1.12%. When the influent DMP concentration reached 5 mg/L, the plant in V-ASP was significantly inhibited. High-throughput sequencing results showed that DMP had a certain effect on the microbial diversity of activated sludge and rhizosphere sludge in V-ASP. The relative abundance of Proteobacteria was the highest in the microbial community, and that of Rhodococcus increased with the increase of DMP concentration. -
[1] 李冰,李玉双,魏建兵,等. 环境样品中邻苯二甲酸酯的荧光分析条件优化[J]. 环境工程, 2018, 36(10):145-149. [2] ZHANG W Z, ZHENG X W, GU P, et al. Distribution and risk assessment of phthalates in water and sediment of the Pearl River Delta[J]. Environmental Science and Pollution Research, 2020, 27(11):12550-12565. [3] 袁建辉,徐新云. 邻苯二甲酸酯类塑化剂的毒理学研究进展[C]//毒物历史文化与博物馆研讨会, 西安:2018. [4] 陈荣圻. 邻苯二甲酸酯类增塑剂对人类健康的危害[J]. 染料与染色, 2015, 52(6):52-58. [5] 赵萌,孙志民,杨辉,等. Fenton/絮凝协同处理含镍及高浓度DMP的废水研究[J]. 环境工程, 2016,34(增刊1):129-134. [6] SALAUDEEN T, OKOH O, FOLUSO A, et al. Phthalates removal efficiency in different wastewater treatment technology in the Eastern Cape, South Africa[J]. Environmental Monitoring and Assessment:An International Journal, 2018, 190(5):299. [7] ZHENG L, LIU T T, XIE E, et al. Partition and fate of phthalate acid esters (PAEs) in a full-scale horizontal subsurface flow constructed wetland treating polluted River Water[J]. Water, 2020, 12(3):865. [8] 赵航晨. 人工湿地去除污水厂尾水中邻苯二甲酸酯类污染物的研究[D]. 重庆:重庆交通大学, 2021. [9] 张键. 人工湿地处理源水中两种典型POPs物质的效果研究[D]. 扬州:扬州大学, 2010. [10] ZHANG T, HUANG Z H, CHEN X H, et al. Degradation behavior of dimethyl phthalate in an anaerobic/anoxic/oxic system[J]. Journal of Environmental Management, 2016, 184(2):281-288. [11] 贾琳然,李博,齐虹. 污水中邻苯二甲酸酯处理现状研究[C]//2017中国环境科学学会科学与技术年会, 厦门:2017. [12] 刘雯,丘锦荣,卫泽斌,等. 植物-生物膜氧化沟处理生活污水的中试研究[J]. 中国给水排水, 2009, 25(15):8-10. [13] WANG R G, ZHAO X, LIU H, et al. Elucidating the impact of influent pollutant loadings on pollutants removal in agricultural waste-based constructed wetlands treating low C/N wastewater[J]. Bioresource Technology, 2019, 273:529-537. [14] YUAN J J, DONG W Y, SUN F Y, et al. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment:system development, treatment performance, and mathematical modeling[J]. Environmental Science and Pollution Research, 2016, 23(10):10234-10246. [15] MARTTINEN S K, KETTUNEN R H, SORMUNEN K M, et al. Removal of bis(2-ethylhexyl) phthalate at a sewage treatment plant[J]. Water Research, 2003, 37(6):1385-1393. [16] DENNIS K, THAMMARAT K, HANS B. Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia[J]. Ecological Engineering, 2008, 35(2):248-257. [17] 王翠彦. 污水处理过程中邻苯二甲酸酯类物质的分布及去除规律研究[D]. 济南:山东建筑大学, 2013. [18] LIANG D W, ZHANG T, FANG H H P, et al. Phthalates biodegradation in the environment[J]. Applied Microbiology and Biotechnology, 2008, 80(2):183-198. [19] 姜清凤. PAEs对活性污泥法(SBR)运行及生物相演替影响的研究[D]. 阜新:辽宁工程技术大学, 2016. [20] ZHAO X, WANG R G, DONG L, et al. Simultaneous removal of nitrogen and dimethyl phthalate from low-carbon wastewaters by using intermittently-aerated constructed wetlands[J]. Journal of Hazardous Materials, 2021, 404(A):123130. [21] 李国婉. 人工湿地基质对磺胺甲噁唑等污染物的同步吸附效果与机制研究[D]. 广州:华南农业大学, 2018. [22] 袁佳佳. 植物-活性污泥复合系统处理生活污水的运行特征与污染物去除机制[D]. 哈尔滨:哈尔滨工业大学, 2017. [23] 冯程程. DMP降解菌Ensifer adhaerens DNM-S1的摄食与降解行为研究[D]. 哈尔滨:东北农业大学, 2020. [24] ZHANG Y, ZHANG H, SUN X, et al. Effect of dimethyl phthalate (DMP) on germination, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L.[J]. Environmental Science & Pollution Research, 2016, 2(23):1183-1192. [25] 蔺琰东,秦舒浩,王丽,等. 外源邻苯二甲酸二甲酯和苯甲酸对马铃薯组培苗生长的化感效应[J]. 广东农业科学, 2011, 38(9):17-20. [26] 张可,龚迎旭,陈伟,等. 生物强化SBR系统中邻苯二甲酸二甲酯的降解[J]. 环境科学与技术, 2017, 40(4):141-147. [27] 许巧玲,崔理华. 垂直流人工湿地对邻苯二甲酸二甲酯的去除效果研究[J]. 湿地科学, 2017, 15(2):298-301. [28] 丁笑寒,兰杰,赵锡冯,等. 不同处理工艺对酞酸酯类化合物去除研究进展[J]. 环境科学与技术, 2021, 44(1):151-161. [29] TANG J P, RONG X, JIN D C, et al. Biodegradation of phthalate esters in four agricultural soils:main influencing factors and mechanisms[J]. International Biodeterioration & Biodegradation, 2020, 147:104867. [30] LI J L, ZHANG J F, YADAV M P, et al. Biodegradability and biodegradation pathway of di-(2-ethylhexyl) phthalate by Burkholderia pyrrocinia B1213[J]. Chemosphere:Environmental Toxicology and Risk Assessment, 2019, 225(Jun.):443-450. [31] NEHA S, VIKRAM D, KRISHNA M J, et al. Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog[J]. Journal of Hazardous Materials, 2017, 338:11-22. [32] 夏凤毅,郑平,周琪,等. 邻苯二甲酸酯化合物生物降解性与其化学结构的相关性[J]. 浙江大学学报(农业与生命科学版), 2004, 30(2):141-146. [33] 王春香,刘常敬,郑林雪,等. 厌氧氨氧化耦合脱氮系统中反硝化微生物研究[J]. 中国给水排水, 2015, 31(13):19-22. [34] 李雨娥. 污水厂PAEs污染对微生物群落的影响及其生物降解研究[D]. 西安:西安工程大学, 2021. [35] CHANG B V, YANG C M, CHENG C H, et al. Biodegradation of phthalate esters by two bacteria strains[J]. Chemosphere, 2004, 55(4):533-538. [36] WANG J L, CHEN L J, SHI H C, et al. Microbial degradation of phthalic acid esters under anaerobic digestion of sludge[J]. Chemosphere, 2000, 41(8):1245-1248. [37] ZHANG T, SHAO M F, YE L. The ISME Journal-454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. ISME Journal, 2012(6):1137-1147. [38] NGUYEN H T T, LE V Q, HANSEN A H, et al. High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems[J]. Fems Microbiology Ecology, 2011, 76(2):256-267. [39] 王晓姗,刘杰,于建生. 海洋氮循环细菌研究进展[J]. 科学技术与工程, 2009, 9(17):5057-5064. [40] 孙瑞雪. Enterobacter sp.DNB-S2对邻苯二甲酸二丁酯(DBP)的降解及镉抗性机理研究[D]. 哈尔滨:东北农业大学, 2020. [41] 王燕. Sphingobium yanoikuyae SHJ对邻苯二甲酸二乙酯的生物降解途径及酶学响应机理[D]. 北京:中国地质大学, 2018.
点击查看大图
计量
- 文章访问数: 141
- HTML全文浏览量: 22
- PDF下载量: 1
- 被引次数: 0