RESEARCH PROGRESS OF ELECTROCHEMICAL MEMBRANE FILTRATION FOR
WATER TREATMENT
-
摘要: 水中的有机污染物由于其毒性、持久性和生物难降解性,对生态环境和人体健康造成严重危害。传统膜分离技术通过物理截留去除水中污染物,然而有机污染物、微生物与膜表面的相互作用不可避免地导致膜污染,缩短膜使用寿命。电化学膜分离技术(electrochemical membrane filtration,EMF)是一种集污染物截留和电化学降解双重功能于一体的新兴水处理技术,具有强化污染物去除、抗污染和效能提升的优势,因此在污染物深度脱除和消毒等方面得到了广泛研究与关注。介绍了电化学膜分离技术在水处理中的研究进展,简述了其工作原理和优势,并重点分析了电化学膜材料、反应器运行参数、水质条件的影响,介绍了该技术在污染物去除和水体消毒的应用现状,最后对其发展进行了总结和展望。Abstract: Organic contaminants in water/wastewater could cause damage to the ecosystem and human health due to their toxicity, persistence and bio-refractory nature. The membrane-based separation processes separate contaminants from water by physicochemical mechanisms. However, the interactions of organic molecules, and microorganisms with membrane surfaces inevitably lead to membrane fouling, which shortens membrane lifetime. Electrochemical membrane filtration (EMF) is an emerging water treatment technology that integrates the dual functions of contaminant retention and electrochemical degradation. It has the advantages of enhanced contaminant removal, antifouling and improved performance, which has received extensive research attention in the areas of advanced contaminant removal and disinfection. This paper reviews the research progress of electrochemical membrane filtration for water treatment in recent years, and introduces the principles of operation and advantages. The electrochemical membrane materials, reactor operating parameters, the influence of water quality parameters and the applications of EMF in pollutant removal and water disinfection are also summarized. Finally, the future development and perspectives of EMF are proposed.
-
Key words:
- electrochemistry /
- membrane filtration /
- electrochemical membrane /
- water treatment
-
[1] BAO L J, MARUYA K A, SNYDER S A, et al. China's water pollution by persistent organic pollutants[J]. Environmental Pollution, 2012, 163:100-108. [2] VASSEGHIAN Y, HOSSEINZADEH S, KHATAEE A, et al. The concentration of persistent organic pollutants in water resources:a global systematic review, meta-analysis and probabilistic risk assessment[J]. Science of the Total Environment, 2021, 796:149000. [3] WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5). [4] LEE A, ELAM J W, DARLING S B. Membrane materials for water purification:design, development, and application[J]. Environmental Science:Water Research & Technology, 2016, 2(1):17-42. [5] PENDERGAST M M, HOEK E M V. A review of water treatment membrane nanotechnologies[J]. Energy & Environmental Science, 2011, 4(6):1946. [6] PAN Z L, SONG C W, LI L, et al. Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment:recent advances and future prospects[J]. Chemical Engineering Journal, 2019, 376:120909. [7] WANG X Y, LI F X, HU X M, et al. Electrochemical advanced oxidation processes coupled with membrane filtration for degrading antibiotic residues:a review on its potential applications, advances, and challenges[J]. Science of the Total Environment, 2021, 784:146912. [8] WEI K J, CUI T, HUANG F, et al. Membrane separation coupled with electrochemical advanced oxidation processes for organic wastewater treatment:a short review[J]. Membranes (Basel), 2020, 10(11):337. [9] FAN X F, ZHAO H M, QUAN X, et al. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation[J]. Water Research, 2016, 88:285-292. [10] FAN X F, ZHAO H M, LIU Y M, et al. Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance[J]. Environmental Science & Technology, 2015, 49(4):2293-2300. [11] WANG K P, XU L L, LI K L, et al. Development of polyaniline conductive membrane for electrically enhanced membrane fouling mitigation[J]. Journal of Membrane Science, 2019, 570/571:371-379. [12] ALMASSI S, LI Z, XU W Q, et al. Simultaneous adsorption and electrochemical reduction of n-nitrosodimethylamine using carbon-Ti4O7 composite reactive electrochemical membranes[J]. Environmental Science & Technology, 2019, 53(2):928-937. [13] SUN M, WANG X X, WINTER L R, et al. Electrified membranes for watertreatment applications[J]. ACS ES&T Engineering, 2021, 1(4):725-752. [14] SHI H H, WANG Y Y, LI C G, et al. Degradation of perfluorooctanesulfonate by a reactive electrochemical membrane composed of magneli phase titanium suboxide[J]. Environmental Science & Technology, 2019, 53(24):14528-14537. [15] LI L, WANG Y, HUANG Q. First-principles study of the degradation of perfluorooctanesulfonate and perfluorobutanesulfonate on a magnéli phase Ti4O7 anode[J]. ACS ES&T Water, 2021, 1(8):1737-1744. [16] PANIZZA M, CERISOLA G. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12):6541-6569. [17] WANG X X, SUN M, ZHAO Y M, et al. In situ electrochemical generation of reactive chlorine species for efficient ultrafiltration membrane self-cleaning[J]. Environmental Science & Technology, 2020, 54(11):6997-7007. [18] ZHOU M, LIU L, JIAO Y L, et al. Treatment of high-salinity reverse osmosis concentrate by electrochemical oxidation on BDD and DSA electrodes[J]. Desalination, 2011, 277(1):201-206. [19] JAYSON G G, PARSONS B, SWALLOW A J. Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter[J]. 1973. DOI: 10.1039/f19736901597. [20] MARTÍNEZ-Huitle C A, RODRIGO M A, SIRÉS I, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants:a critical review[J]. Chemical Reviews, 2015, 115(24):13362-407. [21] POLCARO A M, VACCA A, MASCIA M, et al. Electrochemical treatment of waters with BDD anodes:kinetics of the reactions involving chlorides[J]. Journal of Applied Electrochemistry, 2009, 39(11):2083-2092. [22] LIU Y B, LIU F Q, DING N, et al. Boosting Cr(Ⅵ) detoxification and sequestration efficiency with carbon nanotube electrochemical filter functionalized with nanoscale polyaniline:performance and mechanism[J]. Science of the Total Environment, 2019, 695:133926. [23] LI J Y, MA J X, DAI R B, et al. Self-enhanced decomplexation of Cu-organic complexes and Cu recovery from wastewaters using an electrochemical membrane filtration system[J]. Environmental Science & Technology, 2021, 55(1):655-664. [24] BRYLEV O, SARRAZIN M, ROUÉ L, et al. Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes[J]. Electrochimica Acta, 2007, 52(21):6237-6247. [25] ZHAO Z H, TONG G H, TAN X. Nitrite removal from water by catalytic hydrogenation in a Pd-CNTs/Al2O3 hollow fiber membrane reactor[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(8):2298-2304. [26] GAYEN P, SPATARO J, AVASARALA S, et al. Electrocatalytic reduction of nitrate using magneli phase TiO2 reactive electrochemical membranes doped with Pd-Based catalysts[J]. Environmental Science & Technology, 2018, 52(16):9370-9379. [27] ALMASAAI S, SAMONTE P R V, LI Z, et al. Mechanistic investigation of haloacetic acid reduction using carbon-Ti4O7 composite reactive electrochemical membranes[J]. Environmental Science & Technology, 2020, 54(3):1982-1991. [28] LEE J Y, LEE J G, LEE S H, et al. Hydrogen-atom-mediated electrochemistry[J]. Nature Communications, 2013, 4:2766. [29] LI Y, MA J, WAITE T D, et al. Development of a mechanically flexible 2D-MXene membrane cathode for selective electrochemical reduction of nitrate to N2:mechanisms and implications[J]. Environmental Science & Technology, 2021, 55(15):10695-10703. [30] MAI R, LI N, LAN H C, et al. Dechlorination of trichloroacetic acid using a noble metal-free Graphene-Cu foam electrode via direct cathodic reduction and atomic H[J]. Environmental Science & Technology, 2016, 50(7):3829-3837. [31] XIE W J, YUAN S H, MAO X H, et al. Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater[J]. Water Research, 2013, 47(11):3573-3582. [32] PIMENTEL M, OTURAN N, DEZOTTI M, et al. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode[J]. Applied Catalysis B:Environmental, 2008, 83(1/2):140-149. [33] ZHOU W, MENG X X, GAO J H, et al. Hydrogen peroxide generation from O2 electroreduction for environmental remediation:a state-of-the-art review[J]. Chemosphere, 2019, 225:588-607. [34] LIU Y B, GAO G D, VECITIS C D. Prospects of an electroactive carbon nanotube membrane toward environmental applications[J]. Acc Chem Res, 2020, 53(12):2892-2902. [35] SEN J C, WANG Q Y, ZHANG J, et al. Degradation of sulfadiazine in drinking water by a cathodic electrochemical membrane filtration process[J]. Electrochimica Acta, 2018, 277:77-87. [36] GAO G D, ZHANG Q Y, HAO Z W, et al. Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton[J]. Environmental Science & Technology, 2015, 49(4):2375-2383. [37] LIANG P Y, RIVALLIN M, CERNEAUX S, et al. Coupling cathodic Electro-Fenton reaction to membrane filtration for AO7 dye degradation:a successful feasibility study[J]. Journal of Membrane Science, 2016, 510:182-190. [38] ZHENG J J, XU S P, WU Z C, et al. Removal of p-chloroaniline from polluted waters using a cathodic electrochemical ceramic membrane reactor[J]. Separation and Purification Technology, 2019, 211:753-763. [39] JIANG W L, XIA X, HAN J L, et al. Graphene modified electro-Fenton catalytic membrane for in situ degradation of antibiotic florfenicol[J]. Environmental Science & Technology, 2018, 52(17):9972-9982. [40] LI X H, LIU L F, YANG F L. CFC/PVDF/GO-Fe3+ membrane electrode and flow-through system improved E-Fenton performance with a low dosage of aqueous iron[J]. Separation and Purification Technology, 2018, 193:220-231. [41] GUO D L, LIU Y B, JI H C, et al. Silicate-enhanced heterogeneous flow-through electro-fenton system using Iron oxides under nanoconfinement[J]. Environmental Science & Technology, 2021, 55(6):4045-4053. [42] LI Z Z, SHEN C S, LIU Y B, et al. Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton[J]. Applied Catalysis B:Environmental, 2020, 260:118204. [43] ZHENG S Y, CHEN H S, TONG X, et al. Integration of a photo-fenton reaction and a membrane filtration using CS/PAN@FeOOH/g-C3N4 electrospun nanofibers:synthesis, characterization, self-cleaning performance and mechanism[J]. Applied Catalysis B:Environmental, 2021, 281:119519. [44] LIU Y B, YANG S N, JIANG H L, et al. Sea urchin-like FeOOH functionalized electrochemical CNT filter for one-step arsenite decontamination[J]. Journal of Hazardous Materials, 2021, 407:124384. [45] SUN M, ZUCKER I, DAVENPORT D M, et al. Reactive, self-cleaning ultrafiltration membrane functionalized with Iron oxychloride nanocatalysts[J]. Environmental Science & Technology, 2018, 52(15):8674-8683. [46] OTURAN N, ZHOU M, OTURAN M A. Metomyl degradation by electro-Fenton and electro-Fenton-like processes:a kinetics study of the effect of the nature and concentration of some transition metal ions as catalyst[J]. The Journal of Physical Chemistry A, 2010, 114(39):10605-10611. [47] VASCONCELOS V M, PONCE-DE-LEÓN C, NAVA J L, et al. Electrochemical degradation of RB-5 dye by anodic oxidation, electro-Fenton and by combining anodic oxidation-electro-Fenton in a filter-press flow cell[J]. Journal of Electroanalytical Chemistry, 2016, 765:179-187. [48] PAN Z L, YU F P, LI L, et al. Low-cost electrochemical filtration carbon membrane prepared from coal via self-bonding[J]. Chemical Engineering Journal, 2020, 385:123928. [49] TRELLU C, RIVALLIN M, CERNEAUX S, et al. Integration of sub-stoichiometric titanium oxide reactive electrochemical membrane as anode in the electro-Fenton process[J]. Chemical Engineering Journal, 2020, 400:125936. [50] MISAL S N, LIN M H, MEHRAEEN S, et al. Modeling electrochemical oxidation and reduction of sulfamethoxazole using electrocatalytic reactive electrochemical membranes[J]. Journal of Hazardous Materials, 2020, 384:121420. [51] HUA L K, CAO H, MA Q Q, et al. Microalgae filtration using an electrochemically reactive ceramic membrane:filtration performances, fouling kinetics, and foulant layer characteristics[J]. Environmental Science & Technology, 2020, 54(3):2012-2021. [52] FU W C, WANG X Y, ZHENG J J, et al. Antifouling performance and mechanisms in an electrochemical ceramic membrane reactor for wastewater treatment[J]. Journal of Membrane Science, 2019, 570/571:355-361. [53] ANIS S F, LALIA B S, KHAIR M, et al. Electro-ceramic self-cleaning membranes for biofouling control and prevention in water treatment[J]. Chemical Engineering Journal, 2021, 415:128395. [54] MA C Y, YI C, LI F, et al. Mitigation of membrane fouling using an electroactive polyether sulfone membrane[J]. Membranes (Basel), 2020, 10(2):1-16. [55] 裴姝钊, 朱琳, 张梓萌, 等. 亚氧化钛膜电极电化学特性及其处理印染工业废水的效能研究[J]. 环境科学学报,2020,40(10):3658-3665. [56] YANG K, LIN H, LIANG S T, et al. A reactive electrochemical filter system with an excellent penetration flux porous Ti/SnO2-Sb filter for efficient contaminant removal from water[J]. RSC Advances, 2018, 8(25):13933-13944. [57] LE T X H, HAFLICH H, SHAH A D, et al. Energy-efficient electrochemical oxidation of perfluoroalkyl substances using a Ti4O7 reactive electrochemical membrane anode[J]. Environmental Science & Technology Letters, 2019, 6(8):504-510. [58] LIU Y B, LIU F Q, DING N, et al. Recent advances on electroactive CNT-based membranes for environmental applications:the perfect match of electrochemistry and membrane separation[J]. Chinese Chemical Letters, 2020, 31(10):2539-2548. [59] LIU Y B, DUSTIN L J H, XIA Q, et al. A graphene-based electrochemical filter for water purification[J]. Journal of Materials Chemistry A, 2014, 2(39):16554-16562. [60] LIU Y, WU P, LIU F, et al. Electroactive modified carbon nanotube filter for simultaneous detoxification and sequestration of Sb(Ⅲ)[J]. Environmental Science & Technology, 2019, 53(3):1527-1535. [61] BALASUBRAMANIAN K, BURGHARD M. Chemically functionalized carbon nanotubes[J]. Small, 2005, 1(2):180-192. [62] BARREJÓN M, PRATO M. Carbon nanotube membranes in water treatment applications[J]. Advanced Materials Interfaces, 2021:2101260. [63] JAME S A, ZHOU Z. Electrochemical carbon nanotube filters for water and wastewater treatment[J]. Nanotechnology Reviews, 2016, 5(1):41-50. [64] 胡承志, 刘会娟, 曲久辉. 电化学水处理技术研究进展[J]. 环境工程学报,2018,12(3):677-696. [65] LIU H, ZUO K C, VECITIS C D. Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption[J]. Environmental Science & Technology, 2014, 48(23):13871-13879. [66] TAN T Y, ZENG Z T, ZENG G M, et al. Electrochemically enhanced simultaneous degradation of sulfamethoxazole, ciprofloxacin and amoxicillin from aqueous solution by multi-walled carbon nanotube filter[J]. Separation and Purification Technology, 2020, 235:116167. [67] CHEN S, WANG G L, LI S S, et al. Porous carbon membrane with enhanced selectivity and antifouling capability for water treatment under electrochemical assistance[J]. J Colloid Interface Sci, 2020, 560:59-68. [68] CHEN M, WANG H, ZHAO Y Y, et al. Achieving high-performance nitrate electrocatalysis with Pd-Cu nanoparticles confined in nitrogen-doped carbon coralline[J]. Nanoscale, 2018, 10(40):19023-19030. [69] CHOI I A, KWAK D H, HAN S B, et al. Doped porous carbon nanostructures as non-precious metal catalysts prepared by amino acid glycine for oxygen reduction reaction[J]. Applied Catalysis B:Environmental, 2017, 211:235-244. [70] MA J, WEI W, QIN G T, et al. Electrochemical reduction of nitrate in a catalytic carbon membrane nano-reactor[J]. Water Research, 2022, 208:117862. [71] GAO G D, PAN M L, VECITIS C D. Effect of the oxidation approach on carbon nanotube surface functional groups and electrooxidative filtration performance[J]. Journal of Materials Chemistry A, 2015, 3(14):7575-7582. [72] DAI Y L, YAO Y, LI M H, et al. Carbon nanotube filter functionalized with MIL-101(Fe) for enhanced flow-through electro-Fenton[J]. Environmental Research, 2022, 204(Pt B):112117. [73] XU Y L, YUAN Y, FAN X F, et al. Silver nanowire-carbon nanotube/coal-based carbon composite membrane with fascinating antimicrobial ability and antibiofouling under electrochemical assistance[J]. Journal of Water Process Engineering, 2020, 38:101617. [74] LI B J, TANG W J, SUN D, et al. Electrochemical manufacture of graphene oxide/polyaniline conductive membrane for antibacterial application and electrically enhanced water permeability[J]. Journal of Membrane Science, 2021, 640:119844. [75] CAO P K, QUAN X, ZHAO K, et al. High-efficiency electrocatalysis of molecular oxygen toward hydroxyl radicals enabled by an atomically dispersed iron catalyst[J]. Environmental Science & Technology, 2020, 54(19):12662-12672. [76] QIN F G F, MAWSON J, ZENG X A. Experimental study of fouling and cleaning of sintered stainless steel membrane in electro-microfiltration of calcium salt particles[J]. Membranes, 2011, 1(2):119-131. [77] ZHANG Y H, WEI K J, HAN W Q, et al. Improved electrochemical oxidation of tricyclazole from aqueous solution by enhancing mass transfer in a tubular porous electrode electrocatalytic reactor[J]. Electrochimica Acta, 2016, 189:1-8. [78] ZHOU C Z, WANG Y P, CHEN J, et al. Porous Ti/SnO2-Sb anode as reactive electrochemical membrane for removing trace antiretroviral drug stavudine from wastewater[J]. Environment International, 2019, 133(A):105157. [79] MAMEDA N, PARK H J, CHOO KH. Membrane electro-oxidizer:a new hybrid membrane system with electrochemical oxidation for enhanced organics and fouling control[J]. Water Research, 2017, 126:40-49. [80] LIU S Q, CUI T, XU A L, et al. Electrochemical treatment of flutriafol wastewater using a novel 3D macroporous PbO2 filter:operating parameters, mechanism and toxicity assessment[J]. Journal of Hazardous Materials, 2018, 358:187-197. [81] LIU S Q, WANG Y, ZHOU X Z, et al. Improved degradation of the aqueous flutriafol using a nanostructure macroporous PbO2 as reactive electrochemical membrane[J]. Electrochimica Acta, 2017, 253:357-367. [82] SALAZAR-BANDA G R, SANTOS G D O S, DUARTE GONZAGA I M, et al. Developments in electrode materials for wastewater treatment[J]. Current Opinion in Electrochemistry, 2021, 26:100663. [83] TONG H, YANG C, LV Y Q, et al. Fabrication of tubular porous titanium membrane electrode and application in electrochemical membrane reactor for treatment of wastewater[J]. Journal of Industrial and Engineering Chemistry, 2021, 96:269-276. [84] BEZERRA W D A B, GESSICADE D O S S, MARILIAMOURA S P, et al. Novel eco-friendly method to prepare Ti/RuO2-IrO2 anodes by using polyvinyl alcohol as the solvent[J]. Journal of Electroanalytical Chemistry, 2020, 859:113822. [85] LI Z Y, DAI R B, YANG B C, et al. An electrochemical membrane biofilm reactor for removing sulfonamides from wastewater and suppressing antibiotic resistance development:performance and mechanisms[J]. Journal of Hazardous Materials, 2021, 404(Pt B):124198. [86] DORIA A R, SANTOS G O S, PELEGRINELLI M M S, et al. Improved 4-nitrophenol removal at Ti/RuO2-Sb2O4-TiO2 laser-made anodes[J]. Environmental Science and Pollution Research, 2021, 28(19):23634-23646. [87] ZHANG D, LIANG X P, YANG S M, et al. Investigation of electrocatalytic activity of nanostructure Ce-doped MnOx sol-gel coating deposited on porous Ti membrane electrode[J]. Journal of Sol-Gel Science and Technology, 2018, 86(2):468-478. [88] GENG P, SU J Y, MILES C, et al. Highly-ordered magnéli Ti4O7 nanotube arrays as effective anodic material for electro-oxidation[J]. Electrochimica Acta, 2015, 153:316-324. [89] GANZENKO O, SISTAT P, TRELLU C, et al. Reactive electrochemical membrane for the elimination of carbamazepine in secondary effluent from wastewater treatment plant[J]. Chemical Engineering Journal, 2021, 419:129467. [90] ZAKY A M, CHAPLIN B P. Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment[J]. environmental Science & Technology, 2013, 47(12):6554-6563. [91] ZAKY A M, CHAPLIN B P. Mechanism of p-substituted phenol oxidation at a Ti4O7 reactive electrochemical membrane[J]. Environmental Science & Technology, 2014, 48(10):5857-5867. [92] SKOLOTNEVA E, TRELLU C, CRETIN M, et al. A 2D convection-diffusion model of anodic oxidation of organic compounds mediated by hydroxyl radicals using porous reactive electrochemical membrane[J]. Membranes (Basel), 2020, 10(5):102. [93] GUO L, JINGY, CHAPLIN B P. Development and characterization of ultrafiltration TiO2 magnéli phase reactive electrochemical membranes[J]. Environmental Science & Technology, 2016, 50(3):1428-1436. [94] AHMED F, LALIA B S, KOCHKODAN V, et al. Electrically conductive polymeric membranes for fouling prevention and detection:a review[J]. Desalination, 2016, 391:1-15. [95] ZHANG Y Z, WANG T, MENG J J, et al. A novel conductive composite membrane with polypyrrole (PPy) and stainless-steel mesh:Fabrication, performance, and anti-fouling mechanism[J]. Journal of Membrane Science, 2021, 621:118937. [96] XIE L C, SHU Y, HU Y Y, et al. SWNTs-PAN/TPU/PANI composite electrospun nanofiber membrane for point-of-use efficient electrochemical disinfection:new strategy of CNT disinfection[J]. Chemosphere, 2020, 251:126286. [97] DUAN W Y, RONEN A, WALKER S, et al. Polyaniline-coated carbon nanotube ultrafiltration membranes:enhanced anodic stability for in situ cleaning and electro-oxidation processes[J]. ACS Applied Materials & Interfaces, 2016, 8(34):22574-22584. [98] CHEN M, ZHENG J J, DAI R B, et al. Preferential removal of 2,4-dichlorophenoxyacetic acid from contaminated waters using an electrocatalytic ceramic membrane filtration system:mechanisms and implications[J]. Chemical Engineering Journal, 2020, 387:124132. [99] MA L, ZHOU M H, REN G B, et al. A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation[J]. Electrochimica Acta, 2016, 200:222-230. [100] REN L H, CHEN M, MA J X, et al. Pd-O2 interaction and singlet oxygen formation in a novel reactive electrochemical membrane for ultrafast sulfamethoxazole oxidation[J]. Chemical Engineering Journal, 2022, 428:131194. [101] YANG C, FAN Y, SHANG S S, et al. Fabrication of a permeable SnO2-Sb reactive anodic filter for high-efficiency electrochemical oxidation of antibiotics in wastewater[J]. Environment International, 2021, 157:106827. [102] ZHENG J J, YAN K L, WU Z C, et al. Effective removal of sulfanilic acid from water using a low-pressure electrochemical RuO2-TiO2@Ti/PVDF composite membrane[J]. Frontiers in Chemistry, 2018, 6:395. [103] ZHENG J T, WANG Z W, MA J X, et al. Development of an electrochemical ceramic membrane filtration system for efficient contaminant removal from waters[J]. Environmental Science & Technology, 2018, 52(7):4117-4126. [104] HE Y P, ZHANG P P, HUANG H, et al. Electrochemical degradation of herbicide diuron on flow-through electrochemical reactor and CFD hydrodynamics simulation[J]. Separation and Purification Technology, 2020, 251:117284. [105] 孙继成, 胡维杰, 曹晶, 等. 饮用水中双氯芬酸钠的电化学膜滤法去除工艺[J]. 净水技术,2019,38(2):47-54. [106] 徐浩, 乔丹, 许志成, 等. 电催化氧化技术在有机废水处理中的应用[J]. 工业水处理,2021,41(3):1-9. [107] 周雨珺, 吉庆华, 胡承志, 等. 电化学氧化水处理技术研究进展[J]. 土木与环境工程学报(中英文),2022,44(3):104-118. [108] 雷佳妮, 李晓良, 袁孟孟, 等. 脉冲电化学氧化降解亚甲基蓝[J]. 中国环境科学,2018,38(5):1767-1773. [109] MARKS R G H, KERPEN K, DIESING D, et al. Electrochemical degradation of perfluorooctanoic acid in aqueous solution by boron-doped diamond electrodes under pulsed voltage conditions[J]. Journal of Electroanalytical Chemistry, 2021, 895:115415. [110] LIU X J, NOVAK J T, HE Z. Removal of landfill leachate ultraviolet quenching substances by electricity induced humic acid precipitation and electrooxidation in a membrane electrochemical reactor[J]. Science of the Total Environment, 2019, 689:571-579. [111] XU S P, ZHENG J J, WU Z, et al. Degradation of p-chloroaniline using an electrochemical ceramic microfiltration membrane with built-in electrodes[J]. Electrochimica Acta, 2018, 292:655-666. [112] LIU L, XU Y, WANG K P, et al. Fabrication of a novel conductive ultrafiltration membrane and its application for electrochemical removal of hexavalent chromium[J]. Journal of Membrane Science, 2019, 584:191-201. [113] RAHAMAN M S, VECITIS C D, ELIMELECH M. Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter[J]. Environmental Science & Technology, 2012, 46(3):1556-1564. [114] LEI Q, ZHENG J J, MA J X, et al. Simultaneous solid-liquid separation and wastewater disinfection using an electrochemical dynamic membrane filtration system[J]. Environmental Research, 2020, 180:108861. [115] SINGH S P, LI Y, BEER A, et al. Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action[J]. ACS Appl Mater Interfaces, 2017, 9(21):18238-18247. [116] WANG J B, ZHI D, ZHOU H, et al. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode[J]. Water Research, 2018, 137:324-334. [117] ZHOU X Z, LIU S Q, XU A L, et al. A multi-walled carbon nanotube electrode based on porous Graphite-RuO2 in electrochemical filter for pyrrole degradation[J]. Chemical Engineering Journal, 2017, 330:956-964. [118] CHEN M, ZHAO X, WANG C, et al. Electrochemical oxidation of reverse osmosis concentrates using macroporous Ti-ENTA/SnO2-Sb flow-through anode:degradation performance, energy efficiency and toxicity assessment[J]. Journal of Hazardous Materials, 2021, 401:123295. [119] SINGH S, LO S L, SRIVASTAVA V C, et al. Comparative study of electrochemical oxidation for dye degradation:parametric optimization and mechanism identification[J]. Journal of Environmental Chemical Engineering, 2016, 4(3):2911-2921. [120] QIAO Q C, SINGH S, LO S L, et al. Effect of current density and pH on the electrochemically generated active chloro species for the rapid mineralization of p-substituted phenol[J]. Chemosphere, 2021, 275:129848. [121] ZHANG Y H, YU T H, HAN W Q, et al. Electrochemical treatment of anticancer drugs wastewater containing 5-Fluoro-2-Methoxypyrimidine using a tubular porous electrode electrocatalytic reactor[J]. Electrochimica Acta, 2016, 220:211-221. [122] CAVALCANTI E B, SEGURA S G, CENTELLAS F, et al. Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode:degradation kinetics and oxidation products[J]. Water Research, 2013, 47(5):1803-1815. [123] MOREIRA F C, BOAVENTURA R A R, BRILLAS E, et al. Electrochemical advanced oxidation processes:a review on their application to synthetic and real wastewaters[J]. Applied Catalysis B:Environmental, 2017, 202:217-261. [124] ZHANG Y Q, ZUO S J, ZHOU M H, et al. Removal of tetracycline by coupling of flow-through electro-Fenton and in-situ regenerative active carbon felt adsorption[J]. Chemical Engineering Journal, 2018, 335:685-692. [125] BRILLAS E, SIRES I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on fenton's reaction chemistry[J]. Chemical Reviews, 2009, 109(12):6570-6631. [126] BRILLAS E, GARCIAA-SEGURA S. Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes:a review on the relevance of phenol as model molecule[J]. Separation and Purification Technology, 2020, 237:116337. [127] LIU Y B, ZHANG J, LIU F Q, et al. Ultra-rapid detoxification of Sb(Ⅲ) using a flow-through electro-fenton system[J]. Chemosphere, 2020, 245:125604. [128] SUN M H, AN J S, PAN Z L, et al. Enhanced organic wastewater treatment performance in electrochemical filtration process of coal-based carbon membrane via the simple Fe2+ addition[J]. Separation and Purification Technology, 2021, 276:119418. [129] LIANG S T, LIN H, HABTESELASSIE M, et al. Electrochemical inactivation of bacteria with a titanium sub-oxide reactive membrane[J]. Water Research, 2018, 145:172-180. [130] WEN J J, TAN X J, HU Y Y, et al. Filtration and electrochemical disinfection performance of PAN/PANI/AgNWs-CC composite nanofiber membrane[J]. Environmental Science & Technology, 2017, 51(11):6395-6403. [131] SU P, ZHOU M H, LU X Y, et al. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant[J]. Applied Catalysis B:Environmental, 2019, 245:583-595. [132] ZHAO F, LIU L F, YANG F L, et al. E-Fenton degradation of MB during filtration with Gr/PPy modified membrane cathode[J]. Chemical Engineering Journal, 2013, 230:491-498. [133] LI X H, SHAO S L, YANG Y, et al. Engineering interface with a one-dimensional RuO2/TiO2 heteronanostructure in an electrocatalytic membrane electrode:toward highly efficient micropollutant decomposition[J]. ACS Appl Mater Interfaces, 2020, 12(19):21596-21604. [134] GUO D L, LIU Y B. Singlet oxygen-mediated electrochemical filter for selective and rapid degradation of organic compounds[J]. Industrial & Engineering Chemistry Research, 2020, 59(31):14180-14187. [135] PAN Z L, YU F P, LI L, et al. Electrochemical filtration carbon membrane derived from coal for wastewater treatment:insights into the evolution of electrical conductivity and electrochemical performance during carbonization[J]. Separation and Purification Technology, 2020, 247:116948. [136] BAKR A R, RAHAMAN M S. Crossflow electrochemical filtration for elimination of ibuprofen and bisphenol a from pure and competing electrolytic solution conditions[J]. Journal of Hazardous Materials, 2019, 365:615-621. [137] YANG S N, LIU Y B, SHEN C S, et al. Rapid decontamination of tetracycline hydrolysis product using electrochemical CNT filter:mechanism, impacting factors and pathways[J]. Chemosphere, 2020, 244:125525. [138] ZHENG J J, MA J X, WANG Z W, et al. Contaminant removal from source waters using cathodic electrochemical membrane filtration:mechanisms and implications[J]. Environmental Science & Technology, 2017, 51(5):2757-2765. [139] LI D, TANG J Y, ZHOU X Z, et al. Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode[J]. Chemosphere, 2016, 149:49-56. [140] XU A L, HAN W Q, LI J S, et al. Electrogeneration of hydrogen peroxide using Ti/IrO2-Ta2O5 anode in dual tubular membranes Electro-Fenton reactor for the degradation of tricyclazole without aeration[J]. Chemical Engineering Journal, 2016, 295:152-159. [141] XIE J Z, MA J X, ZHANG C Y, et al. Effect of the presence of carbon in Ti4O7 electrodes on anodic oxidation of contaminants[J]. Environmental Science & Technology, 2020, 54(8):5227-5236. [142] DUAN W Y, CHEN G D, CHEN C X, et al. Electrochemical removal of hexavalent chromium using electrically conducting carbon nanotube/polymer composite ultrafiltration membranes[J]. Journal of Membrane Science, 2017, 531:160-171. [143] HU X M, LIU Y B, LIU F Q, et al. Simultaneous decontamination of arsenite and antimonite using an electrochemical CNT filter functionalized with nanoscale goethite[J]. Chemosphere, 2021, 274:129790. [144] LIU Y B, LIU F Q, QI Z L, et al. Simultaneous oxidation and sorption of highly toxic Sb(Ⅲ) using a dual-functional electroactive filter[J]. Environmental Pollution, 2019, 251:72-80. [145] FAN X F, LIU Y M, WANG X M, et al. Improvement of antifouling andantimicrobial abilities on silver-carbon nanotube based membranes under electrochemical assistance[J]. Environmental Science & Technology, 2019, 53(9):5292-5300. [146] NI X Y, LIU H, WANG C, et al. Comparison of carbonized and graphitized carbon fiber electrodes under flow-through electrode system (FES) for high-efficiency bacterial inactivation[J]. Water Research, 2020, 168:115150. [147] LIU H, NI X Y, HUO Z Y, et al. Carbon fiber-based flow-through electrode system (FES) for water disinfection via direct oxidation mechanism with a sequential reduction-oxidation process[J]. Environmental Science & Technology, 2019, 53(6):3238-3249. [148] WANG C, NIU J F, YIN L F, et al. Electrochemical degradation of fluoxetine on nanotube array intercalated anode with enhanced electronic transport and hydroxyl radical production[J]. Chemical Engineering Journal, 2018, 346:662-671.
点击查看大图
计量
- 文章访问数: 449
- HTML全文浏览量: 67
- PDF下载量: 23
- 被引次数: 0