EFFECTS OF SALINITY ON GROWTH AND CHLOROPHYLL FLUORESCENCE OF MICROCYSTIS AERUGINOSA UNDER ARTEMISININ STRESS
-
摘要: 化感物质青蒿素已被证明具有良好的控制蓝藻水华的作用。为探究盐度存在情况下,青蒿素对铜绿微囊藻的胁迫作用是否受到影响,在0~15‰盐度条件下,测定青蒿素对铜绿微囊藻生长、叶绿素a含量以及叶绿素荧光参数的影响。结果表明:铜绿微囊藻具有一定的适盐性,5‰的盐度可以促进铜绿微囊藻生长,但盐度>10‰则对藻产生显著抑制作用。加入化感物质青蒿素后,低盐度对藻的促进作用消失,盐度强化了青蒿素对铜绿微囊藻的抑制和对光合系统的破坏,具体体现在破坏铜绿微囊藻光合色素、光合作用结构,降低光合反应中心的活性,降低PSⅡ受体侧的电子传递能力等方面。研究成果中为青蒿素在微咸水中的应用提供参考。Abstract: The allelopathic substance artemisinin has been proven to be effective in controlling cyanobacterial blooms. In order to explore whether the stress of artemisinin on Microcystis aeruginosa is affected by salinity, we studied the effects of artemisinin on the growth, chlorophyll-a content, and chlorophyll fluorescence parameters of Microcystis aeruginosa under different salinity conditions (0~15‰). The results showed that Microcystis aeruginosa had a certain salinity adaptability. Salinity of 5‰ could promote the growth, but the salinity above 10‰ had a significant inhibitory effect on the growth of Microcystis aeruginosa. After the addition of artemisinin, the promoting effect of low salinity on algae disappeared, the salinity strengthened the inhibition of artemisinin on Microcystis aeruginosa and the damage to the photosynthetic system, which was reflected in the destruction of photosynthetic pigments and photosynthetic structure, the reduction of photosynthetic reaction center activity, and the decreasing of electron transport capacity of PSⅡ receptor side. The research results could provide reference for the application of artemisinin in brackish water.
-
[1] PARK H K, LEE H J, HEO J, et al. Deciphering the key factors determining spatio-temporal heterogeneity of cyanobacterial bloom dynamics in the Nakdong River with consecutive large weirs[J]. Science of the Total Environment, 2021, 755:143079. [2] NI L X, WU H Q, DU C H, et al. Effects of allelochemical artemisinin in Artemisia annua on Microcystis aeruginosa:growth, death mode, and microcystin-LR changes[J]. Environmental Science and Pollution Research, 2021, 28(33):45253-45265. [3] 陈蕾. 咸潮入侵对河口型水库铜绿微囊藻生长及其藻毒素产生机制的研究[D].上海:上海交通大学, 2016. [4] 许秋瑾, 张亚丽, 席北斗. NaCl和Na2SO4盐胁对铜绿微囊藻生长影响的对比研究[J]. 生态环境学报, 2013, 22(1):147-150. [5] 查广才, 周昌清, 牛晓光. 铜绿微囊藻对凡纳滨对虾低盐度养殖的危害研究[J]. 中山大学学报(自然科学版), 2007, 46(2):64-67. [6] WANG W J, SHENG Y Q, JIANG M. Physiological and metabolic responses of Microcystis aeruginosa to a salinity gradient[J]. Environmental Science and Pollution Research, 2022, 29(9):13226-13237. [7] WANG Z S, AKBAR S, SUN Y F, et al. Cyanobacterial dominance and succession:factors, mechanisms, predictions, and managements[J]. Journal of Environmental Management, 2021, 297:113281. [8] 燕志强, 谈晶, 郭凯, 等. 青蒿素对狗尾草和马齿苋种子萌发和幼苗生长的化感效应研究[J].植物生理学报, 2021, 57(5):1163-1169. [9] NI L X, ACHARYA K, MAO X Y, et al. Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae[J]. Chemosphere, 2012, 88(9):1051-1057. [10] NI L X, ACHARYA K, HAO X Y, et al. Effects of artemisinin on photosystem Ⅱ performance of Microcystis aeruginosa by in vivo chlorophyll fluorescence[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89(6):1165-1169. [11] 甘小蓉, 王超, 杨超慧. 4种化感物质对铜绿微囊藻生长及叶绿素荧光参数影响的比较[J]. 四川环境, 2019, 38(5):1-6. [12] KOTZAMANI A, VASILAKOGLOU I, DHIMA K, et al. Impact of soil salinity on barley allelopathic potential and main secondary metabolites gramine and hordenine[J]. Journal of Plant Growth Regulation, 2021, 40(1):137-146. [13] KONARZEWSKA Z, SLIWINSKA-WILCZEWSKA S, FELPETO A B, et al. Effects of light intensity, temperature, and salinity in allelopathic interactions between coexisting Synechococcus sp. phenotypes[J]. Marine Environmental Research, 2022, 179:10. [14] 高云霓, 刘碧云, 王静, 等.苦草(Vallisneria spiralis)释放的酚酸类物质对铜绿微囊藻(Microcystis aeruginosa)的化感作用[J].湖泊科学, 2011, 23(5):761-766. [15] 周春妙, 肖锦程, 于俊杰, 等.壳聚糖和纳米碳铜对铜绿微囊藻的抑制效果[J].湖南农业大学学报(自然科学版), 2022, 4(2):242-250. [16] 徐彩平, 刘霞, 陈宇炜. 浮游植物叶绿素a浓度测定方法的比较研究[J]. 生态与农村环境学报, 2013, 29(4):438-442. [17] DUARTE B, SANTOS D, MARQUES J C, et al. Biophysical probing of Spartina maritima photo-system Ⅱ changes during prolonged tidal submersion periods[J]. Plant Physiology and Biochemistry, 2014, 77:122-132. [18] PLATT T, GALLEGOS C L, HARRISON W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton[J]. Journal of Marine Research, 1980, 38:687-701. [19] 郑逸. 滨海人工湿地中藻类胁迫因素和氮磷利用研究[D].天津:天津科技大学, 2020. [20] 聂利华, 李训仕, 刘亚群, 等. 温度、光照、盐度与pH对淡水蓝藻拟柱胞藻生长的影响[J]. 生态科学, 2016, 35(4):102-108. [21] SCHOOR A, SCHUBERT H, HAGEMANN M. Immediate effects of a salt shock on energy distribution to the photosystems of Synechocystis sp PCC 6803[C]//the Xth International Photosynthesis Congress, Montpellier, France, F Aug 20-25, 1995. Kluwer Academic Publ:DORDRECHT, 1995. [22] 郭赣林, 徐静, 赵艳景, 等. 盐度变化对黑藻生长和光合作用的影响[J]. 淮海工学院学报(自然科学版), 2010, 19(4):83-86. [23] 齐安翔, 蔡明刚, 黄天春, 等. 不同盐度下敌敌畏对海水小球藻的毒性效应[J]. 厦门大学学报(自然科学版), 2005, 44(增刊1):215-218. [24] ZHANG R, DONG P Y, SUN H W, et al. Combined stresses of boron and salinity on growth of two freshwater algal species[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(1):147-153. [25] 严慧丽, 智文艳, 何家瑜, 等. 五倍子水提液对铜绿微囊藻叶绿素荧光参数及生长的影响[C]//中国环境科学学会2019年科学技术年会:环境工程技术创新与应用分论坛, 中国陕西西安, 2019. [26] 逯久幸, 苗润田, 王司琦, 等. 低温胁迫下秋菊叶片光系统特性分析[J]. 植物生理学报, 2022, 58(2):425-434. [27] GAO Y N, YANG H, DONG J, et al. Growth and photosynthesis responses of microcystin (MC)- and non-MC-producing Microcystis strains during co-culture with the submerged macrophyte Myriophyllum spicatum[J]. Water Science and Technology, 2022, 86(1):56-65. [28] 朱俊英, 刘碧云, 王静, 等. 穗花狐尾藻化感作用对铜绿微囊藻光合效率的影响[J]. 环境科学, 2011, 32(10):2904-2908. [29] HU J L, JIN L, WANG X J, et al. Response of photosynthetic systems to salinity stress in the desert cyanobacterium Scytonema javanicurn[J]. Advances in Space Research, 2014, 53(1):30-36.
点击查看大图
计量
- 文章访问数: 214
- HTML全文浏览量: 30
- PDF下载量: 18
- 被引次数: 0