EVALUATION OF ECOLOGICAL WATER REPLENISHMENT AMOUNT AND PATH FOR URBAN SMALL AND MICRO WETLANDS BASED ON HYDRODYNAMIC PROCESS: A CASE STUDY OF BEIJING HANSHIQIAO WETLAND
-
摘要: 汉石桥湿地自然保护区在北京市涵养水源、调节气候以及保护生物多样性等方面发挥着重要作用。随着近年来华北地区气候暖干化、城市化,汉石桥湿地缺水问题严重,导致其生态严重退化。南水北调等输水工程缓解了北京地区的水资源紧张,为汉石桥湿地生态补水奠定了基础条件。然而,根据汉石桥湿地生态水系网络特征与生物多样性需求,制定科学、高效、可持续的生态补水方案,依然是亟待解决的问题。基于多年观测数据和实地测量结果,从水域面积、芦苇适宜生境、水文连通性3个角度探究确定湿地最适水位及对应生态补水量。研究表明,维持汉石桥正常生态功能的水位在25.7 m以上,最适水位为26.2 m。当超过最适水位后,生态补水的效用逐渐递减并趋于稳定。基于此,研究利用水动力模型对湿地的水动力过程进行模拟,发现单路补水使湿地北部水动力得到显著改善,但整体效果不佳;双路补水既能改善入水口区域水动力情况,又能提升总体水动力条件;而三入水口补水,则可以使水动力改善空间分布更均衡。该研究结果可为提升汉石桥湿地保护区生态补水效率、推进湿地生态系统的可持续发展提供理论支撑。Abstract: Hanshiqiao Wetland Nature Reserve plays an essential role in water conservation, local climate regulation, and biodiversity protection of Beijing. In recent years, as the warming-drying trend and urbanization become remarkable in North China, Hanshiqiao Wetland faces severe water shortage problems, causing severe degradation of the ecology. Due to the implementation of water delivery projects such as the South-to-North Water Diversion Project, the shortage of water resources in Beijing has been effectively erased, making the supplement project of ecological water in the Hanshiqiao Wetland possible. However, formulating a scientific, efficient, and sustainable supplement plan is still an urgent problem, where the characteristics of the ecological water system network and needs of biodiversity in the Hanshiqiao Wetland should be considered. Based on observation data and field measurement results, this paper explored and determined the optimum water level of wetlands and the corresponding supplement project of ecological water from 3 perspectives:wetland water area, suitable habitat for reeds, and hydrological connectivity. The results showed that the water level must be at least 25.7 m to maintain the normal ecological function, and the optimum water level was 26.2 m. If the wetland water level exceeded the optimum water level, the effectiveness of the supplement project would gradually decrease and then become stable. Furtherly, we simulated the hydrodynamic process of the wetland by the MIKE21 model under four scenarios. Then, we explored the influence of different water supplement projects on the hydrodynamic process of the Hanshiqiao Wetland. We found that the hydrodynamic behavior of the north part got significantly improved, under the water replenishment scenario from the single route, however, the average velocity of the entire wetland did not markedly improve. The hydrodynamic behavior at the entrance of two replenishment routes and the entire wetland was improved. When the water replenishment was conducted by three divided routes, the hydrodynamic behavior was distributed more evenly. The research results provide necessary theoretical support for improving the efficiency of ecological water supplements and promoting the sustainable development of the wetland ecosystem in the Hanshiqiao Wetland Reserve.
-
[1] 牛晓楠, 段智钊, 李双霜, 等. 惠州市建成区湿地资源动态变化及驱动因素分析[J]. 绿色科技, 2021, 23(20):1-7. [2] RIDEOUT N, COMPSON Z, MONK W, et al. The beautiful and the dammed:defining multi-stressor disturbance regimes in an atlantic river floodplain wetland[J]. Frontiers in Ecology and Evolution, 2021, 9:553094. [3] SONG F, SU F L, MI C X, et al. Analysis of driving forces on wetland ecosystem services value change:a case in Northeast China[J]. Science of the Total Environment, 2021, 751:141778. [4] LONG X R, LIN H, AN X X, et al. Evaluation and analysis of ecosystem service value based on land use/cover change in Dongting Lake wetland[J]. Ecological Indicators, 2022, 136:108619. [5] LIU W, ZHAN J Y, ZHAO F, et al. Impacts of urbanization-induced land-use changes on ecosystem services:a case study of the Pearl River Delta Metropolitan Region, China[J]. Ecological Indicators, 2019, 98:228-238. [6] MAO D H, WANG Z M, DU B J, et al. National wetland mapping in China:a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164:11-25. [7] 曾庆慧, 胡鹏, 赵翠平, 等. 多水源补给对白洋淀湿地水动力的影响[J]. 生态学报, 2020, 40(20):7153-7164. [8] 杨永森, 高鹏杰. 基于二维水动力模型的湿地生态补水研究与应用[J]. 湿地科学与管理, 2015, 11(3):58-62. [9] 杨薇, 赵彦伟, 刘强, 等. 白洋淀生态需水:进展及展望[J]. 湖泊科学, 2020, 32(2):294-308. [10] 王国栋, 姜明, 盛春蕾, 等. 湿地生态学的研究进展与展望[J]. 中国科学基金, 2022, 26(3):364-375. [11] 闫子. 汉石桥湿地生态系统脆弱原因分析[J]. 现代农村科技, 2021(1):102. [12] 张佳蕊. 北京市汉石桥湿地自然保护区植物和植被初步研究[D]. 北京:北京林业大学, 2007. [13] 叶頔, 李景文, 尚红喜. 北京市湿地植物多样性及旱生植物入侵对生物多样性的影响[J]. 科学技术与工程, 2006, 6(18):2858-2863, 2867. [14] 高梓洋, 许昌, 孙丽, 等. 北京顺义区湿地保护与恢复规划初探[J]. 湿地科学与管理, 2020, 16(1):9-12. [15] 杨柳, 马克明, 白雪, 等. 洪河国家级自然保护区最小生态需水量与补水分析[J]. 生态学报, 2008, 28(9):4501-4507. [16] 王有利. 向海湿地补水生态补偿机制研究[D]. 长春:吉林大学, 2012. [17] 周洁, 朱丽. 南海湿地生态长效补水优化控制方法[J]. 科学技术与工程, 2018, 18(31):246-251. [18] 陈光, 牛童, 李万成, 等. 北京汉石桥湿地自然保护区鸟类多样性[J]. 湿地科学与管理, 2015, 11(3):50-54. [19] TRIGG M A, MICHAELIDES K, NEAL J C, et al. Surface water connectivity dynamics of a large scale extreme flood[J]. Journal of Hydrology, 2013, 505:138-149. [20] 许婷. 丹麦MIKE21模型概述及应用实例[J]. 水利科技与经济, 2010, 16(8):867-869. [21] 崔保山, 杨志峰. 湿地生态环境需水量研究[J]. 环境科学学报, 2002(2):219-224. [22] 侯保灯, 王高旭, 肖伟华, 等. 一种湿地生态层次化需水量分析方法:CN107784443A[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzMjMSEENOMjAxNzExMDI2OTIxLjUaCGd6Ymc2dWdn.2018-03-09. [23] 廖临毓. 城市浅水湖泊二维水动力水质耦合模型应用研究[D]. 武汉:华中科技大学, 2016. [24] 杨卫, 张利平, 李宗礼, 等. 基于水环境改善的城市湖泊群河湖连通方案研究[J]. 地理学报, 2018, 73(1):115-128. [25] 王宁, 骆辉煌, 杨青瑞, 等. 扎龙湿地芦苇生长适宜水深初探[J]. 水电能源科学, 2020, 38(12):101-104. [26] 凌瑜楠, 刘英, 彭佳宾, 等. 博斯腾小湖最低生态水位与水量盈缺分析[J]. 环境工程, 2020, 38(10):26-32, 60.
点击查看大图
计量
- 文章访问数: 228
- HTML全文浏览量: 20
- PDF下载量: 11
- 被引次数: 0