UNMANNED AERIAL VEHICLE (UAV) REMOTE SENSING TECHNOLOGY IN WETLAND HYDRODYNAMIC RESEARCH: PROGRESS, PROSPECT, AND CHALLENGES
-
摘要: 水动力过程对湿地生态系统结构和功能具有重要调控作用,准确、高效地获取湿地水动力参数对于湿地研究和保护修复具有重要意义。无人机遥感技术具有操作简便、机动性强、成像高度低、受天气环境影响小的特点,近年来被广泛应用于非接触地进行湿地水动力监测。梳理了无人机在水位、水下地形(水深)和流速(流量)3种主要水动力参数监测中的应用现状,总结了当前方法的不足和发展前景,以期为未来水动力监测及其在湿地管理中的应用提供参考。针对当前存在问题,提出了面对复杂湿地环境和监测需求的高标准化、自动化监测是未来无人机水动力遥感监测的重点发展方向。如何应对未来智能化、信息化湿地保护与管理需求,提高无人机监测效率、数据传输效率,促进无人机与其他多平台监测数据融合技术的发展,推动数字孪生湿地建设应被重点关注。Abstract: The hydrodynamic process plays an important role in regulating the structure and functioning of the wetland ecosystem. Therefore, obtaining the hydrodynamic parameters accurately and efficiently is of great significance for wetland research and the protection and restoration of the wetland ecosystem. Given the advantage of high flexibility, strong adaptability to weather conditions, simplicity in operation, and ability to acquire data at a low flight height, the unmanned aerial vehicle (UAV) technology, has been widely used as an efficient and non-contact way to monitor wetland hydrodynamics in recent years. To provide references for hydrodynamic investigation and its application in future wetland protection management, the present study summarized the recent progress and limitation of UAV technology in wetland hydrodynamic research. Water level, bathymetry (water depth), and velocity (discharge), the three main parameters in the hydrodynamic investigation, were reviewed in this study. For the future requirements of wetland management, we proposed that high standardization and automatic monitoring are the key development direction for future UAV-based hydrodynamic investigation. In addition, to construct the digital twin wetland and enhance intelligent and information-based wetland protection and management, how to improve the detecting efficiency, data transmission efficiency of UAV and combine the UAV-based data with multi-platform data should receive more attention.
-
Key words:
- unmanned aerial vehicle (UAV) /
- remote sensing /
- wetland hydrodynamic /
- water level /
- bathymetry /
- velocity
-
[1] BRIDGEWATER P, KIM R E. The ramsar convention on wetlands at 50[J]. Nature Ecology & Evolution, 2021, 5(3):268-270. [2] 章光新, 武瑶, 吴燕锋, 等. 湿地生态水文学研究综述[J]. 水科学进展, 2018, 29(5):737-749. [3] DAVIDSON N C. How much wetland has the world lost? Long-term and recent trends in global wetland area[J]. Marine and Freshwater Research, 2014, 65(10):934-941. [4] MAO D H, YANG H, WANG Z M, et al. Reverse the hidden loss of China's wetlands[J]. Science, 2022, 376(6597):1061. [5] TEAL J M, WEISHAR L. Ecological engineering, adaptive management, and restoration management in Delaware Bay salt marsh restoration[J]. Ecological Engineering, 2005, 25(3):304-314. [6] 陈俐交, 宗勇军, 邵秘华, 等. 双台子河口湿地植被修复生境健康评价方法研究[J]. 环境工程, 2017, 35(2):158-162. [7] 浙江省林业局. 国家林草局持续加强湿地保护和修复[EB/OL]. http://lyj.zj.gov.cn/art/2022/5/30/art_1276367_59031998.html. 2022-05-30. [8] 国家林业和草原局政府网. 湿地保护修复[EB/OL]. https://www.forestry.gov.cn/main/6193/20220302/153916535797497.html. 2022-03-02. [9] HE Q. Conservation:‘No net loss’ of wetland quantity and quality[J]. Current Biology, 2019, 29(20):R1070-R1072. [10] 贺怡, 王雪宏, 杨继松, 等. 湿地水文连通影响因素及生态效应研究进展[J]. 生态科学, 2021, 40(6):218-224. [11] 王新艳, 闫家国, 白军红, 等. 黄河口滨海湿地水文连通对大型底栖动物生物连通的影响[J]. 自然资源学报, 2019, 34(12):2544-2553. [12] GAO W, SHAO D, WANG Z B, et al. Combined effects of unsteady river discharges and wave conditions on river mouth bar morphodynamics[J]. Geophysical Research Letters, 2018, 45(23):12903-12911. [13] 傅国斌, 李克让. 全球变暖与湿地生态系统的研究进展[J]. 地理研究, 2001, 20(1):120-128. [14] 孟宪民. 湿地与全球环境变化[J]. 地理科学, 1999, 19(5):385-391. [15] 林磊, 刘东艳, 刘哲, 等. 围填海对海洋水动力与生态环境的影响[J]. 海洋学报, 2016, 38(8):1-11. [16] 田艺苑, 杨薇, 刘强, 等. 白洋淀流域水文连通对浮游植物群落的影响[J]. 农业环境科学学报, 2021, 40(7):1538-1547. [17] 董李勤, 章光新. 嫩江流域沼泽湿地景观变化及其水文驱动因素分析[J]. 水科学进展, 2013, 24(2):177-183. [18] 符国伟, 宋艳伟, 袁坤, 等. 博鳌珊瑚岛围填导致邻近海岸侵蚀、淤积演变的研究[J]. 海洋环境科学, 2022, 41(2):174-179. [19] LI Y, QIU J, LI Z, et al. Assessment of blue carbon storage loss in coastal wetlands under rapid reclamation[J]. Sustainability, 2018, 10(8). [20] SCHOOLMASTER Jr D R, STAGG C L, CREAMER C, et al. A model of the spatiotemporal dynamics of soil carbon following coastal wetland loss applied to a louisiana salt marsh in the Mississippi River Deltaic Plain[J]. Journal of Geophysical Research-Biogeosciences, 2022, 127(6). [21] 段晓男, 王效科, 逯非, 等. 中国湿地生态系统固碳现状和潜力[J]. 生态学报, 2008, 28(2):463-469. [22] 刘元波, 吴桂平, 赵晓松, 等. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5):488-496. [23] TAURO F, PISCOPIA R, GRIMALDI S. Streamflow observations from cameras:Large-scale particle image velocimetry or particle tracking velocimetry?[J]. Water Resources Research, 2017, 53(12):10374-10394. [24] BOEGH E, THORSEN M, BUTTS M B, et al. Incorporating remote sensing data in physically based distributed agro-hydrological modelling[J]. Journal of Hydrology, 2004, 287(1/2/3/4):279-299. [25] 辛沛, 金光球, 李凌, 等. 崇明东滩盐沼潮沟水动力过程观测与分析[J]. 水科学进展, 2009, 20(1):74-79. [26] 龚然, 徐进, 徐力刚, 等. 基于efdc城市景观湖泊水动力模拟研究[J]. 环境工程, 2015, 33(4):58-62, 91. [27] PEARCE S, LJUBICIC R, PENA-HARO S, et al. An evaluation of image velocimetry techniques under low flow conditions and high seeding densities using unmanned aerial systems[J]. Remote Sensing, 2020, 12(2):232. [28] LEWIS Q W, LINDROTH E M, RHOADS B L. Integrating unmanned aerial systems and LSPIV for rapid, cost-effective stream gauging[J]. Journal of Hydrology, 2018, 560:230-246. [29] ZHAN P F, SONG C Q, LUO S X, et al. Lake level reconstructed from DEM-based virtual station:comparison of multisource DEMs with laser altimetry and UAV-LiDAR measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [30] ALSDORF D E, RODRÍGUEZ E, LETTENMAIER D P. Measuring surface water from space[J]. Reviews of Geophysics, 2007, 45(2). [31] 张舒昱, 李兆富, 徐锋, 等. 基于多时相无人机遥感影像优化河口湿地景观分类[J]. 生态学杂志, 2020, 39(9):3174-3184. [32] ELTNER A, ELIAS M, SARDEMANN H, et al. Automatic image-based water stage measurement for long-term observations in ungauged catchments[J]. Water Resources Research, 2018, 54(12):10362-10371. [33] WANG J, YANG S T, LOU H Z, et al. Impact of lake water level decline on river evolution in Ebinur Lake basin (an ungauged terminal lake basin)[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104:102546. [34] YANG S T, WANG P F, LOU H Z, et al. Estimating river discharges in ungauged catchments using the slope-area method and unmanned aerial vehicle[J]. Water, 2019, 11(11):2361. [35] BANDINI F, SUNDING T P, LINDE J, et al. Unmanned aerial system (UAS) observations of water surface elevation in a small stream:comparison of radar altimetry, LiDAR and photogrammetry techniques[J]. Remote Sensing of Environment, 2020, 237:111487. [36] DETERT M. How to avoid and correct biased riverine surface image velocimetry[J]. Water Resources Research, 2021, 57(2). [37] DAL SASSO S F, PIZARRO A, PEARCE S, et al. Increasing LSPIV performances by exploiting the seeding distribution index at different spatial scales[J]. Journal of Hydrology, 2021, 598:126438. [38] ELTNER A, SARDEMANN H, GRUNDMANN J. Technical note:flow velocity and discharge measurement in rivers using terrestrial and unmanned-aerial-vehicle imagery[J]. Hydrology and Earth System Sciences, 2020, 24(3):1429-1445. [39] ACHARYA B S, BHANDARI M, BANDINI F, et al. Unmanned aerial vehicles in hydrology and water management:applications, challenges, and perspectives[J]. Water Resources Research, 2021, 57(11). [40] EMANUELE P, NIVES G, ANDREA C, et al. Bathymetric detection of fluvial environments through UASs and machine learning systems[J]. Remote Sensing, 2020, 12(24):24. [41] BANDINI F, LUTHI B, PENA-HARO S, et al. A drone-borne method to jointly estimate discharge and manning's roughness of natural streams[J]. Water Resources Research, 2021, 57(2):22. [42] BANDINI F, JAKOBSEN J, OLESEN D, et al. Measuring water level in rivers and lakes from lightweight unmanned aerial vehicles[J]. Journal of Hydrology, 2017, 548:237-250. [43] 唐军武, 陈戈, 陈卫标, 等. 海洋三维遥感与海洋剖面激光雷达[J]. 遥感学报, 2021, 25(1):460-500. [44] 杜建丽, 陈动, 张振鑫, 等. 建筑点云几何模型重建方法研究进展[J]. 遥感学报, 2019, 23(3):374-391. [45] GUENTHER G C, CUNNINGHAM A G, LAROCQUE P E, et al. Meeting the accuracy challenge in airborne bathymetry[R]:National Oceanic Atmospheric Administration/Nesdis Silver Spring MD, 2000. [46] MANDLBURGER G, PFENNIGBAUER M, WIESER M, et al. Evaluation of a novel UAV-borne topo-bathymetric laser profiler[J]. Copernicus GmbH, 2016. [47] HUANG Z C, YEH C Y, TSENG K H, et al. A UAV-RTK LiDAR system for wave and tide measurements in coastal zones[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(8):1557-1570. [48] PINGEL T J, SAAVEDRA A, COBO L. Deriving land and water surface elevations in the northeastern Yucatán Peninsula using PPK GPS and UAV-based structure from motion[J]. Papers in Applied Geography, 2021, 7(3):294-315. [49] RIDOLFI E, MANCIOLA P. Water level measurements from drones:a pilot case study at a dam site[J]. Water, 2018, 10(3):10. [50] KRÖHNERT M, MEICHSNER R. Segmentation of environmental time lapse image sequences for the determination of shore lines captured by hand-held smartphone cameras[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-2/W4:1-8. [51] WOODGET A S, CARBONNEAU P E, VISSER F, et al. Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry[J]. Earth Surface Processes and Landforms, 2015, 40(1):47-64. [52] PAI H, MALENDA H F, BRIGGS M A, et al. Potential for small unmanned aircraft systems applications for identifying groundwater-surface water exchange in a meandering river reach[J]. Geophysical Research Letters, 2017, 44(23):11868-11877. [53] MOHAMAD N, KHANAN M F A, AHMAD A, et al. Evaluating water level changes at different tidal phases using UAV photogrammetry and gnss vertical data[J]. Sensors, 2019, 19(17):19. [54] KOHV M, SEPP E, VAMMUS L. Assessing multitemporal water-level changes with UAV-based photogrammetry[J]. Photogrammetric Record, 2017, 32(160):424-442. [55] GARCÍA-LÓPEZ S, RUIZ-ORTIZ V, BARBERO L, et al. Contribution of the UAS to the determination of the water budget in a coastal wetland:a case study in the natural park of the bay of Cádiz (sw spain)[J]. European Journal of Remote Sensing, 2018, 51(1):965-977. [56] COOPER I, HOTCHKISS R H, WILLIAMS G P. Extending multi-beam sonar with structure from motion data of shorelines for complete pool bathymetry of reservoirs[J]. Remote Sensing, 2021, 13(1):30. [57] BANDINI F, LOPEZ-TAMAYO A, MEREDIZ-ALONSO G, et al. Unmanned aerial vehicle observations of water surface elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico[J]. Hydrogeology Journal, 2018, 26(7):2213-2228. [58] BANDINI F, OLESEN D, JAKOBSEN J, et al. Technical note:bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an unmanned aerial vehicle[J]. Hydrology and Earth System Sciences, 2018, 22(8):4165-4181. [59] ALVAREZ L V, MORENO H A, SEGALES A R, et al. Merging unmanned aerial systems (UAS) imagery and echo soundings with an adaptive sampling technique for bathymetric surveys[J]. Remote Sensing, 2018, 10(9):24. [60] CHEN X, KONG W, CHEN T, et al. Fiber-laser-pumped green laser for photon-counting bathymetric LiDAR on UAV platform[C]//7th Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, CHN, 2020. [61] KINZEL P J, LEGLEITER C J. SUAS-based remote sensing of river discharge using thermal particle image velocimetry and bathymetric LiDAR[J]. Remote Sensing, 2019, 11(19):19. [62] MANDLBURGER G, PFENNIGBAUER M, RIEGL U, et al. Complementing airborne laser bathymetry with UAV-based LiDAR for capturing alluvial landscapes[C]//Conference on Remote Sensing for Agriculture, Ecosystems, and Hydrology ⅩⅦ part of the International Symposium on Remote Sensing, Toulouse, FRA, 2015. [63] MANDLBURGER G, PFENNIGBAUER M, SCHWARZ R, et al. Concept and performance evaluation of a novel UAV-borne topo-bathymetric LiDAR sensor[J]. Remote Sensing, 2020, 12(6):28. [64] WANG D D, XING S, HE Y, et al. Evaluation of a new lightweight UAV-borne topo-bathymetric LiDAR for shallow water bathymetry and object detection[J]. Sensors, 2022, 22(4):20. [65] AGRAFIOTIS P, SKARLATOS D, GEORGOPOULOS A, et al. Depthlearn:learning to correct the refraction on point clouds derived from aerial imagery for accurate dense shallow water bathymetry based on SVMs-fusion with LiDAR point clouds[J]. Remote Sensing, 2019, 11(19):31. [66] DIETRICH J T. Bathymetric structure-from-motion:extracting shallow stream bathymetry from multi-view stereo photogrammetry[J]. Earth Surface Processes and Landforms, 2017, 42(2):355-364. [67] KASVI E, SALMELA J, LOTSARI E, et al. Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers[J]. Geomorphology, 2019, 333:180-197. [68] SLOCUM R K, PARRISH C E, SIMPSON C H. Combined geometric-radiometric and neural network approach to shallow bathymetric mapping with UAS imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169:351-363. [69] CHIROL C, HAIGH I D, PONTEE N, et al. Parametrizing tidal creek morphology in mature saltmarshes using semi-automated extraction from LiDAR[J]. Remote Sensing of Environment, 2018, 209:291-311. [70] ZHU X, MENG L, ZHANG Y, et al. Tidal and meteorological influences on the growth of invasive spartina alterniflora:evidence from UAV remote sensing[J]. Remote Sensing, 2019, 11(10):1208. [71] 戴玮琦, 李欢, 龚政, 等. 无人机技术在潮滩地貌演变研究中的应用[J]. 水科学进展, 2019, 30(3):359-372. [72] LEJOT J, DELACOURT C, PIÉGAY H, et al. Very high spatial resolution imagery for channel bathymetry and topography from an unmanned mapping controlled platform[J]. Earth Surface Processes and Landforms, 2007, 32(11):1705-1725. [73] GENTILE V, MR'OZ M, SPITONI M, et al. Bathymetric mapping of shallow rivers with UAV hyperspectral data[C]//Fifth International Conference on Telecommunications and Remote Sensing, Milan, ITA, 2016. [74] STAREK M J, GIESSEL J, IEEE. Fusion of UAS-based structure-from-motion and optical inversion for seamless topo-bathymetric mapping[C]//IEEE International Geoscience & Remote Sensing Symposium, Fort Worth, USA, 2017. [75] WANG J L, CHEN M, ZHU W D, et al. A combined approach for retrieving bathymetry from aerial stereo RGB imagery[J]. Remote Sensing, 2022, 14(3):15. [76] BANDINI F, FRIAS M C, LIU J, et al. Challenges with regard to unmanned aerial systems (UASs) measurement of river surface velocity using doppler radar[J]. Remote Sensing, 2022, 14(5):23. [77] FULTON J W, ANDERSON I E, CHIU C L, et al. Qcam:sUAS-based doppler radar for measuring river discharge[J]. Remote Sensing, 2020, 12(20):23. [78] TAURO F, PAGANO C, PHAMDUY P, et al. Large-scale particle image velocimetry from an unmanned aerial vehicle[J]. IEEE-Asme Transactions on Mechatronics, 2015, 20(6):3269-3275. [79] DAL SASSO S F, PIZARRO A, SAMELA C, et al. Exploring the optimal experimental setup for surface flow velocity measurements using PTV[J]. Environmental Monitoring and Assessment, 2018, 190(8), 460. [80] SCHWEITZER S A, COWEN E A. Instantaneous river-wide water surface velocity field measurements at centimeter scales using infrared quantitative image velocimetry[J]. Water Resources Research, 2021, 57(8):eWR029279. [81] JOLLEY M J, RUSSELL A J, QUINN P F, et al. Considerations when applying large-scale PIV and PTV for determining river flow velocity[J]. Frontiers in Water, 2021, 3. [82] PERKS M T. KLT-IV v1.0:Image velocimetry software for use with fixed and mobile platforms[J]. Geoscientific Model Development, 2020, 13(12):6111-6130. [83] MESELHE E A, PEEVA T, MUSTE M. Large scale particle image velocimetry for low velocity and shallow water flows[J]. Journal of Hydraulic Engineering, 2004, 130(9):937-940. [84] DAL SASSO S F, PIZARRO A, MANFREDA S. Metrics for the quantification of seeding characteristics to enhance image velocimetry performance in rivers[J]. Remote Sensing, 2020, 12(11):20. [85] PIZARRO A, DAL SASSO S F, PERKS M T, et al. Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow[J]. Hydrology and Earth System Sciences, 2020, 24(11):5173-5185. [86] PIZARRO A, DAL SASSO S F, MANFREDA S. Refining image-velocimetry performances for streamflow monitoring:Seeding metrics to errors minimization[J]. Hydrological Processes, 2020, 34(25):5167-5175. [87] LIU W C, LU C H, HUANG W C. Large-scale particle image velocimetry to measure streamflow from videos recorded from unmanned aerial vehicle and fixed imaging system[J]. Remote Sensing, 2021, 13(14):20. [88] TAURO F, TOSI F, MATTOCCIA S, et al. Optical tracking velocimetry (OTV):leveraging optical flow and trajectory-based filtering for surface streamflow observations[J]. Remote Sensing, 2018, 10(12). [89] FUJITA I, WATANABE H, TSUBAKI R. Development of a non-intrusive and efficient flow monitoring technique:the space-time image velocimetry (STIV)[J]. International Journal of River Basin Management, 2007, 5(2):105-114. [90] LEITÃO J P, PEÑA-HARO S, LVTHI B, et al. Urban overland runoff velocity measurement with consumer-grade surveillance cameras and surface structure image velocimetry[J]. Journal of Hydrology, 2018, 565:791-804. [91] LVTHI B, PHILIPPE T, PEÑA-HARO S. Mobile device app for small open-channel flow measurement[C]//Proceedings of the 7th International Congress on Environmental Modelling and Software (iEMSs' 14), San Diego, USA, 2014. [92] HAN X L, CHEN K B, ZHONG Q, et al. Two-dimensional space-time image velocimetry for surface flow field of mountain rivers based on UAV video[J]. Frontiers in Earth Science, 2021, 9:11. [93] TAURO F, PETROSELLI A, ARCANGELETTI E. Assessment of drone-based surface flow observations[J]. Hydrological Processes, 2016, 30(7):1114-1130. [94] BIGGS H J, SMITH B, DETERT M, et al. Surface image velocimetry:aerial tracer particle distribution system and techniques for reducing environmental noise with coloured tracer particles[J]. River Research and Applications, 2022, 38(6). [95] BOTÍN-SANABRIA D M, MIHAITA A-S, PEIMBERT-GARCÍA R E, et al. Digital twin technology challenges and applications:a comprehensive review[J]. Remote Sensing, 2022, 14(6). [96] 李建新. 数字孪生海河建设及关键技术[J]. 中国水利, 2022(9):17-20. [97] 李文正. 数字孪生流域系统架构及关键技术研究[J]. 中国水利, 2022(9):25-29. [98] 夏润亮, 李涛, 余伟, 等. 流域数字孪生理论及其在黄河防汛中的实践[J]. 中国水利, 2021(20):11-13. [99] JIANG L G, BANDINI F, SMITH O, et al. The value of distributed high-resolution UAV-borne observations of water surface elevation for river management and hydrodynamic modeling[J]. Remote Sensing, 2020, 12(7):15. [100] LANGHAMMER J, BERNSTEINOVA J, MIRIJOVSKY J. Building a high-precision 2D hydrodynamic flood model using UAV photogrammetry and sensor network monitoring[J]. Water, 2017, 9(11):22.
点击查看大图
计量
- 文章访问数: 222
- HTML全文浏览量: 34
- PDF下载量: 12
- 被引次数: 0