RESEARCH AND APPLICATION OF ENHANCED PURIFICATION TECHNOLOGY OF MICRO-POLLUTED WATER BODIES BY BYPASS COMPOUND FLOW WETLAND IN A RIVER CHANNEL
-
摘要: 为实现河道微污染水体水质净化与行洪排涝双重功能,采用下向流/上向流复合流旁路湿地工艺,设计有机负荷qos=21 kg BOD5/(hm2·d),水力负荷qhs=0.34 m3/(m2·d),水力停留时间HRT=2.2 d,同时为提高冬季低温条件下的湿地系统净化效果,对湿地填料床结构形式、植物组合搭配以及冬季低温运行措施进行了优化,研究表明:1)下向流/上向流复合流功能湿地空间布设灵活,可节约建设占地,通过折流布水,可形成良好的厌氧/缺氧/好氧微生环境,有益于发挥湿地系统的脱氮除磷效果;2)通过增加保温填料覆盖层、采取低温冰下低水位运行、辅以耐低温植物/微生物强化,在冬季低温湿地进水ρ(COD)为30~40 mg/L,ρ(NH3-N)为1.5~2.0 mg/L,ρ(TP)为0.3~0.4 mg/L条件下,实现了3个标段湿地出水平均值ρ(COD)=20.67 mg/L,ρ(NH3-N)=0.77 mg/L,ρ(TP)=0.17 mg/L,基本满足冬季低温条件下的水质设计目标。Abstract: In order to realize the dual functions of water purification and flood discharge and drainage in the micro-polluted river, this study constructed a kind of bypass wetland with a downward-upward compound flow process. The main parameters of the project were organic load, hydraulic load and hydraulic retention time, which were 21 kg BOD5/(hm2·d), 0.34 m3/(m2·d), 2.2 d, respectively. At the same time, the project was optimized by the structure of the wetland packing bed, the plant combination and the low-temperature operation measures in winter. The main conclusions were as follows:1) the downward/upward-flow composite functional wetland had a flexible spatial layout. The construction could save the land, and form a good Anaerobic/Anoxic/Aerobic microbial environment, which is conducive to the removal of nitrogen and phosphorus from the wetland system; 2) by adding the covering layer of thermal insulation filler, operating at low water level under low-temperature ice, and strengthening with low temperature-resistant plants/microorganisms, COD concentration, ammonia nitrogen concentration, and total phosphorus concentration of the effluent of the three bidding sections was 20.67 mg/L, 0.77 mg/L,0.17 mg/L, under their influent concentration of 30~40 mg/L, 1.5~2.0 mg/L and 0.3~0.4 mg/L in winter, basically meeting the water quality design goal under low-temperature conditions in winter.
-
Key words:
- bypass wetland /
- composite flow /
- low-temperature operation /
- water purification effect
-
[1] 住房和城乡建设部标准定额研究所. 人工湿地污水处理技术导则:RISN-TG006-2009[S]. 北京:中国建筑工业出版社, 2009. [2] 黄炳彬, 岳伦.人工湿地技术在北京市的研究及应用进展[J]. 北京水务, 2018(3):26-30. [3] 黄雪玲, 刘慧敏, 何启帆, 等. 低温条件下不同曝气方式对硫自养湿地脱氮效能的影响[J]. 环境工程学报, 2019, 13(11):2619-2628. [4] 闫凯丽, 吴德礼, 张亚雷. 我国不同区域农村生活污水处理的技术选择[J]. 江苏农业科学, 2017, 45(12):212-216. [5] 杨杨阳, 万蕾, 张林军.人工湿地低温运行效果及强化措施研究现状[J]. 生态经济, 2012(12):192-195. [6] 杜甫义, 阿琼, 白玛旺堆, 等. 人工湿地污水处理技术在高寒缺氧地区的应用综述[J]. 江苏农业科学, 2017, 45(17):16-19. [7] 纪淼, 尚少文. 寒冷地区人工湿地的冬季运行[J]. 建筑与预算, 2017(6):39-42. [8] 唐美珍, 汪文飞, 李如如, 等. 生物炭对Pseudomonas flava WD-3的固定化及其强化人工湿地污水处理研究[J]. 环境科学学报, 2017, 37(9):3441-3448. [9] 唐双, 王小雨. 低温微生物及其在污水处理中的应用研究进展[J]. 科技通报, 2015, 31(7):229-236. [10] 赵倩, 庄林岚, 盛芹, 张建. 潜流人工湿地中基质在污水净化中的作用机制与选择原理[J]. 环境工程, 2021, 39(9):14-22. [11] 姚东, 冯雪丽, 张保君, 等.龙河人工湿地在北方冬季低温条件下的运行效率[J]. 环境工程, 2022, 40(1):148-154. [12] 嵇斌, 康佩颖, 卫婷, 等. 寒冷气候下人工湿地中氮素的去除与强化[J]. 中国给水排水, 2019, 35(16):35-40. [13] 余俊霞, 陈双荣, 刘凌言, 等. 复合人工湿地系统对低污染水总氮的净化效果及其微生物群落结构特征[J]. 环境工程, 2022, 40(1):13-20.
点击查看大图
计量
- 文章访问数: 250
- HTML全文浏览量: 19
- PDF下载量: 11
- 被引次数: 0