SEDIMENT POLLUTION AND ECOLOGICAL DREDGING IN THE WANSHAN LAKE IN XISHAN DISTRICT, WUXI
-
摘要: 底泥生态疏浚作为生态修复的重要措施之一,已广泛应用于太湖流域水环境综合治理。为解决区域的水环境问题,进一步提高人居环境质量,开展了锡山区宛山湖底泥污染和生态清淤研究。以宛山湖九里河口以北湖区为研究对象,通过对宛山湖基本情况及底泥污染现状调研分析,充分考虑通航和引水需求以及施工深度限制等因素,确定生态清淤范围和工程量。本次疏浚面积为0.75 km2,疏浚深度为0.3~1.3 m,疏浚总量为56.82万m3,其中底泥清淤34.82万m3,航道疏槽22.00万m3。从清淤要求、清淤深度、清淤设备选择、清淤工艺等关键技术点着手制定宛山湖北部湖区底泥清淤方案。通过对先导区污染底泥的生态清淤,有效削减底泥内源污染,促进宛山湖水体水质改善,并为宛山湖水生态修复奠定基础,具有显著的环境和社会效益。Abstract: As one of the important ecological restoration measures, sediment dredging has been widely used for the comprehensive restoration of the polluted water system in the Taihu Lake basin. In order to solve the regional environmental problems of the water system and further improve the quality of human settlements, we selected the north lake area of Jiuli Estuary in the Wanshan Lake in Xishan District in Wuxi and studied sediment pollution and ecological dredging. Our study determined the range and quantity of the dredging by analyzing the basic and present situation of sediment pollution in the Wanshan Lake with a full consideration of several limiting factors such as navigation, water demand and constructional depth. The results showed that the whole project achieved 568200 m3 of dredging with an area of 0.75 square kilometers and depth of 0.3 to 1.3 m, including 348200 m3 of sediment dredging, and 220,000 m3 of channel dredging. Several key aspects of techniques were considered for the deeper dredging in northern Wanshan Lake, including desilting requirement, dredging depth, dredging equipment selection and dredging process. As a whole, this study highlighted that ecological dredging effectively reduced the sediment pollution level and water quality of the Wanshan Lake, which laid a solid foundation for the restoration of the polluted water bodies.
-
Key words:
- wetland restoration /
- the Wanshan Lake /
- sediment dredging /
- ecological silting /
- water management
-
[1] 韩朋序. 交互集成理念下新型产业地区空间规划探索:以无锡市宛山湖片区为例[C]//2021中国城市规划年会.成都, 2021. [2] 郭宇龙.湖泊蓝藻水华在连通河道的扩散特征及水质影响[D].无锡:江南大学, 2021. [3] KAREL E. Ecological effects of dumping of dredged sediments; options for management[J]. Journal of Coastal Conservation, 1999, 5:69-80. [4] MANAP N, VOULVOULIS N. Risk-based decision-making framework for the selection of sediment dredging option[J]. Science of the Total Environment, 2014, 496:607-623. [5] TUREKIAN K K, STEELE J H, THORPE S A. A derivative encyclopedia of ocean sciences. ClimOceans, 2010, 1:1-647. [6] JING L D, BAI S, LI Y H, et al. Dredging project caused short-term positive effects on lake ecosystem health:A five-year follow-up study at the integrated lake ecosystem level[J]. Science of the Total Environment, 2019, 686:753-763. [7] 荣楠, 周道坤, 郭灿斌, 等.不同释放模式下网湖沉积物氮磷释放通量估算[J].环境科学学报, 2022, 42(5):345-354. [8] 王莹.滇池内源污染治理技术对比分析研究[D].昆明:昆明理工大学, 2012. [9] 邓鋆, 毕广宇, 李立青, 等.复合混凝在去除清淤底泥余水中溶解性有机质的应用研究[J].安全与环境工程, 2022, 29(3):136-160. [10] 陆志华, 蔡梅, 王元元, 等.太湖沿岸区浅层底泥重金属污染分析及生态风险评价[J].湖泊科学, 2022, 34(2):455-467. [11] 易雨君, 王文君, 宋劼.长江中下游底泥重金属污染特征、潜在生态风险评价及来源分析[J].水利水电技术, 2019, 50(2):1-7. [12] 路文典, 龚浩, 徐超.黑臭水体底泥调查分析及达标清淤量研究[J].水资源开发与管理, 2022, 8(3):142-150. [13] 夏文林, 黄伟.黑臭水体综合治理工程中河道底泥清淤深度的确定[J].中国给水排水, 2022, 38(6):44-47. [14] 张友德, 田文凤, 何建军, 等.黑臭水体底泥内源污染治理技术对比及分析[J].绿色科技, 2022, 24(8):103-113. [15] 魏志杰, 尚晓, 张彦朋, 等.嘉兴市南湖生态环境修复工程的系统构建与效果评价[J].环境工程学报, 2022, https://kns.cnki.net/kcms/detail/11.5591.X.20220519.1620.031.html. [16] 张建华, 殷鹏, 张雷, 等.底泥疏浚对太湖内源及底栖生物恢复的影响[J].环境科学, 2022, https://kns.cnki.net/kcms/detail/11.1895.X.20220622.0938.004.html. [17] 向莹, 张鸿涛, 高宏洲, 等.九江市琵琶湖底泥环境特征与生态清淤工程[J].中国给水排水, 2021, 37(14):142-150. [18] 严丽芳.太湖生态清淤底泥处理技术比选分析[J].东北水利水电, 2020, 11:45-46. [19] 石稳民, 黄文海, 罗金学, 等.基于生态修复的河湖环保清淤关键问题研究[J].环境科学与技术, 2019, 42(增刊2):125-131. [20] 王梦思, 王婧.浅谈河湖生态清淤疏浚施工技术[J].中国水运, 2020, 11:94-95. [21] 单玉书, 沈爱春, 刘畅.太湖底泥清淤疏浚问题探讨[J].中国水利, 2018, (23):11-13. [22] YUAN L, LIU D Y, TIAN B, et al. A solution for restoration of critical wetlands and waterbird habitats in coastal deltaic systems[J]. Journal of Environmental Management, 2022, 302:113996.
点击查看大图
计量
- 文章访问数: 167
- HTML全文浏览量: 16
- PDF下载量: 13
- 被引次数: 0