APPLICATION OF TAILWATER CONSTRUCTED WETLAND IN THE GREAT PROTECTION OF YANGTZE RIVER: A CASE STUDY OF JIANGDONG WATER ECOLOGICAL PARK
-
摘要: 为评价长江大保护中尾水型人工湿地的运行效果,针对性地提出运维管理建议,以芜湖江东水生态公园为例,于2021年7月—2022年1月对其不同功能单元出水进行监测,分析各单元对污染物的去除路径及影响因子。结果表明:净化效果方面,在尾水水质较好的前提下(COD、NH3-N、TN、TP等污染物浓度指标均远低于《城镇污水处理厂污染物排放标准》中的一级A标准),江东水生态公园对各污染物的去除效果仍较好,其中强化表流湿地对NH3-N、TN和TP的平均去除率分别为85.53%、17.60%和33.71%,串联于强化表流湿地后端的生态涵养塘具有进一步削减强化表流湿地出水中污染物的能力,其中在夏秋季(8—10月)对NH3-N和TP的平均去除率分别为27.04%和22.51%。影响因子方面,温度和溶解氧浓度对人工湿地脱氮效果影响较大,可在冬季采取保温增氧措施,并根据运行实际综合采取小剂量分批次投加植物碳源,优化潜流湿地填料,设计多级人工湿地串联系统等手段,进一步保障长江大保护尾水型人工湿地运行效果的可持续性。Abstract: In order to evaluate the operation effect of the tailwater constructed wetland in the Great Protection of Yangtze River and to put forward operation and maintenance management suggestions, the effluent water quality, pollutants removal paths and influence factors of different functional units in the Wuhu Jiangdong Water Ecological Park were monitored and analyzed from July 2021 to January 2022. The results showed that Jiangdong water ecological park still had a good removal effect of various pollutants under the premise of good tailwater quality (The concentration indexes of COD, ammonia nitrogen, total nitrogen, total phosphorus were much lower than the Class A standard in the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant) in terms of purification effect. The average removal rates of ammonia nitrogen, total nitrogen and total phosphorus in the enhanced surface flow constructed wetland were 85.53%, 17.6% and 33.71% respectively. The ecological conservation pond connected to the end of the enhanced surface flow constructed wetland had the ability to further reduce the pollutants in the effluent of the enhanced surface flow constructed wetland. The average removal rates of ammonia nitrogen and total phosphorus in summer and autumn (August to October) were 27.04% and 22.51% respectively. In terms of impact factors, temperature and dissolved oxygen concentration had a great impact on the denitrification effect of constructed wetland, therefore it was recommended to take thermal insulation and oxygen-enhancing measures in winter. According to the actual operation, addition of small doses of plant carbon sources in batches, optimization of subsurface flow constructed wetland fillers, and design of multi-stage constructed wetland system can be taken to further ensure the sustainability of the operation effect of the tailwater constructed wetland in the Great Protection of the Yangtze River.
-
[1] 张高军, 王永军, 魏玉朝, 等. 改良人工湿地强化污水处理厂尾水脱氮性能研究[J]. 中国资源综合利用, 2022, 40(2):194-198. [2] 潘成荣, 陈建, 彭书传, 等. 复合型人工湿地对污水厂尾水的深度处理效果[J/OL].中国给水排水:1-15[2022-05-02].http://kns.cnki.net/kcms/detail/12.1073.TU.20210330.1114.002.html. [3] 宋柯峥, 胡昀. 人工湿地净化尾水效果的研究[J]. 湖北大学学报(自然科学版), 2020, 42(2):179-184. [4] 李琳琳, 李荣涛, 孔维静, 等. 曝气人工湿地脱除低污染水中氮的影响因素[J]. 环境科学, 2021, 42(12):5857-5864. [5] 姚东, 冯雪丽, 张保君, 等. 龙河人工湿地在北方冬季低温条件下的运行效率[J]. 环境工程, 2022, 40(1):148-154. [6] 狄春华, 施学峰. 尚湖原水pH异常原因分析及应对[J]. 中国卫生检验杂志, 2011, 21(10):2532-2533, 2537. [7] 王文林, 韩睿明, 王国祥, 等. 湿地植物根系泌氧及其在自然基质中的扩散效应研究进展[J]. 生态学报, 2015, 35(22):7286-7297. [8] 苏睿丽, 李伟. 沉水植物光合作用的特点与研究进展[J]. 植物学通报, 2005, 22(增刊1):128-138. [9] LI C, DING S M, CHEN M S, et al. Mechanistic insights into trace metal mobilization at the micro-scale in the rhizosphere of Vallisneria spiralis[J]. Science of the Total Environment, 2022, 806:150735. [10] 胡洁, 许光远, 胡香, 等. 组合式人工湿地深度处理小城镇污水处理厂尾水[J]. 水处理技术, 2018, 44(11):120-122, 132. [11] HUANG X, YANG X M, ZHU J, et al. Microbial interspecific interaction and nitrogen metabolism pathway for the treatment of municipal wastewater by iron carbon based constructed wetland[J]. Bioresource Technology, 2020, 315:123814. [12] PENG S, KONG Q, DENG S H, et al. Application potential of simultaneous nitrification/Fe0-supported autotrophic denitrification (SNAD) based on iron-scraps and micro-electrolysis[J]. Science of the Total Environment, 2020, 711:135087. [13] WU H M, ZHANG J, GUO W S, et al. Secondary effluent purification by a large-scale multi-stage surface-flow constructed wetland:a case study in northern China[J]. Bioresource Technology, 2018, 249:1092-1096. [14] 卢少勇, 金相灿, 余刚. 人工湿地的氮去除机理[J]. 生态学报, 2006, 26(8):2670-2677. [15] 丁怡, 唐海燕, 刘兴坡, 等. 不同类型人工湿地在污水脱氮中的研究进展[J]. 工业水处理, 2019, 39(7):1-3, 9. [16] ZHOU X, LIANG C L, JIA L X, et al. An innovative biochar-amended substrate vertical flow constructed wetland for low C/N wastewater treatment:impact of influent strengths[J]. Bioresource Technology, 2018, 247:844-850. [17] KIZITO S, LV T, WU S B, et al. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns:role of media and tidal operation[J]. Science of the Total Environment, 2017, 592:197-205. [18] 翟俊, 陶桂林, 杜佳靖, 等. 跌跃式薄水层人工湿地复氧槽复氧效果试验研究[J]. 中国给水排水, 2014, 30(13):23-26. [19] 王宇喆. 长江经济带污水处理工艺空间分布研究[J]. 绿色科技, 2022, 24(2):74-79. [20] 余俊霞, 陈双荣, 刘凌言, 等. 复合人工湿地系统对低污染水总氮的净化效果及其微生物群落结构特征[J]. 环境工程, 2022, 40(1):13-20. [21] LEE C G, FLETCHER T D, SUN G Z. Nitrogen removal in constructed wetland systems[J]. Engineering in Life Sciences, 2009, 9(1):11-22. [22] 黄杉, 怀静, 吴娟, 等. 碳源补充促进人工湿地脱氮研究进展[J]. 水处理技术, 2018, 44(1):13-16. [23] ZHU T D, GAO J Q, HUANG Z Z, et al. Comparison of performance of two large-scale vertical-flow constructed wetlands treating wastewater treatment plant tail-water:contaminants removal and associated microbial community[J]. Journal of Environmental Management, 2021, 278:111564. [24] WU S Q, GAO L, GU J Y, et al. Enhancement of nitrogen removal via addition of cattail litter in surface flow constructed wetland[J]. Journal of Cleaner Production, 2018, 204:205-211. [25] WU F, HE S B, GU X S, et al. The suitable biomass carbon source for improving nitrogen removal in surface flow constructed wetland system:fresh vs. withered[J]. Journal of Environmental Management, 2022, 308:114624. [26] 高培慧. 环境监测中影响总磷-磷酸盐测定的误差因素[J]. 化工管理, 2021(5):45-46, 62. [27] MENDES L R D, TONDERSKI K, IVERSEN B V, et al. Phosphorus retention in surface-flow constructed wetlands targeting agricultural drainage water[J]. Ecological Engineering, 2018, 120:94-103. [28] 谢涛, 海热提, 周有. 垂直流-潜流式人工湿地技术在北京流域污染治理中的应用研究[J]. 环境科学与管理, 2006, 31(4):120-123. [29] 赵同宇. 溶解氧对人工湿地系统除磷性能影响研究[J]. 辽宁化工, 2021, 50(7):982-984, 1097. [30] HUANG L, GAO X, GUO J S, et al. Study on the purification efficiency of micro-polluted river treated by subsurface horizontal flow constructed wetlands[J]. Procedia Environmental Sciences, 2011, 10:908-913. [31] KE F, LI W C, LI H Y, et al. Advanced phosphorus removal for secondary effluent using a natural treatment system[J]. Water Science and Technology, 2012, 65(8):1412-1419. [32] 牛瑞华, 宋新山, 周斌, 等. 潜流人工湿地水力学研究进展[J]. 南水北调与水利科技, 2014, 12(1):94-96, 109. [33] SHEN S T, LI X, CHENG F K, et al. Review:recent developments of substrates for nitrogen and phosphorus removal in CWs treating municipal wastewater[J]. Environmental Science and Pollution Research, 2020, 27(24):29837-29855. [34] WANG H X, SHENG L X, XU J L. Clogging mechanisms of constructed wetlands:a critical review[J]. Journal of Cleaner Production, 2021, 295:126455. [35] LI H F, LIU F, LUO P, et al. Stimulation of optimized influent C:N ratios on nitrogen removal in surface flow constructed wetlands:performance and microbial mechanisms[J]. Science of the Total Environment, 2019, 694:133575. [36] LI Y P, ZHANG H K, ZHU L Q, et al. Evaluation of the long-term performance in a large-scale integrated surface flow constructed wetland-pond system:a case study[J]. Bioresource Technology, 2020, 309:123310. [37] KUSCHK P, WIEßNER A, KAPPELMEYER U, et al. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate[J]. Water Research, 2003, 37(17):4236-4242. [38] LIANG Y K, WANG Q H, HUANG L, et al. Insight into the mechanisms of biochar addition on pollutant removal enhancement and nitrous oxide emission reduction in subsurface flow constructed wetlands:microbial community structure, functional genes and enzyme activity[J]. Bioresource Technology, 2020, 307:123249.
点击查看大图
计量
- 文章访问数: 170
- HTML全文浏览量: 29
- PDF下载量: 14
- 被引次数: 0