REGULATION OF HYDRAULIC RETENTION TIME THRESHOLD OF RECLAIMED WATER LANDSCAPE FOR BLOOM CONTROL
-
摘要: 再生水景观利用是解决城市景观用水短缺的有效途径之一。但较高氮磷浓度的再生水进入流动性较差的景观水体中极易发生水华现象。在现有再生水排放标准下,水力停留时间的调控是控制景观水体中微藻生物量的有效手段。根据微藻生长模型和水质动力学模型,提出了基于水力停留时间调控的景观水体水华控制方法及其阈值确定方法。通过计算,得到再生水氮、磷浓度执行GB 18918—2002《城镇污水处理厂污染物排放标准》A标准(总氮15 mg/L,总磷0.5 mg/L)对应的水力停留时间阈值为2.477 d;执行DB11/890—2012北京市《城镇污水处理厂水污染物排放标准》A (总氮10 mg/L,总磷0.2 mg/L)对应的水力停留时间阈值为5.034 d;执行昆明市地方标准DB5301/T43—2020《城镇污水处理厂主要污染物排放限值》A级(总氮5 mg/L,总磷0.05 mg/L)对应的水力停留时间阈值为21.659 d,B级(总氮10 mg/L,总磷0.3 mg/L)对应的水力停留时间阈值为3.783 d,C级(总氮15 mg/L,总磷0.4 mg/L)对应的水力停留时间阈值为2.811 d;执行91/271/ZEC《欧盟城市污水处理指令》(总氮15 mg/L,总磷2 mg/L)对应的水力停留时间阈值为1.476 d。控制景观水体的水力停留时间小于对应的阈值,便可有效控制景观水体水华的暴发。Abstract: Utilization of reclaimed water landscape is one of the effective ways to solve the shortage of urban landscape water. However, reclaimed water with a high concentration of nitrogen and phosphorus enters the landscape water with poor mobility, which is prone to water bloom. Under the existing reclaimed water discharge standard, the regulation of hydraulic retention time is an effective means to control microalgae biomass in landscape water. In this study, based on the microalgae growth model and the water quality dynamical model, a method for controlling the water bloom of landscape water and its threshold determination based on regulation of hydraulic retention time were proposed. Through calculation, the threshold value of hydraulic retention time corresponding to the national standard GB 18918-2002 (TN=15 mg/L, TP=0.5 mg/L) was 2.477 d; corresponding to the discharge standard (DB11/800-2012) level A (TN=10 mg/L, TP=0.2 mg/L) of water pollutants for urban sewage treatment plants in Beijing was 5.033 d; corresponding to the discharge standard (DB5301/T43-2020) level A of Kunming sewage treatment plants (TN=5 mg/L, TP=0.05 mg/L) was 21.655 d; corresponding to the discharge standard (DB5301/T43-2020) level B of Kunming sewage treatment plants (TN=10 mg/L, TP=0.3 mg/L) was 3.783 d; corresponding to the discharge standard (DB5301/T43-2020) level C of Kunming sewage treatment plants (TN=15 mg/L, TP=0.4 mg/L) was 2.811 d; corresponding to the standard of EU urban sewage treatment (91/271/ZEC) (TN=15 mg/L, TP=2 mg/L) was 1.475 d. If the hydraulic retention time of the landscape water body is less than the corresponding threshold, the water blooms in the landscape water body can be effectively controlled.
-
Key words:
- reclaimed water /
- bloom control /
- hydraulic retention time /
- threshold /
- mixed algae
-
[1] 胡洪营, 孙迎雪, 陈卓, 等. 城市水环境治理面临的课题与长效治理模式[J]. 环境工程, 2019, 37(10):6-15. [2] CHU J Y, CHEN J N, WANG C, et al. Wastewater reuse potential analysis:implications for China's water resources management[J]. Water Res, 2004, 38(11):2746-2756. [3] MARKS J S. Taking the public seriously:the case of potable and non potable reuse[J]. Desalination, 2006, 187(1/2/3):137-147. [4] XIE E, ZHAO X H, LI K, et al. Microbial community structure in the river sediments from upstream of Guanting Reservoir:Potential impacts of reclaimed water recharge[J]. Sci Total Environ, 2021, 766:142609. [5] QU J H, WANG H C, WANG K J, et al. Municipal wastewater treatment in China:development history and future perspectives[J]. Front Env Sci Eng, 2019, 13(6):3-9. [6] CHEN Z, WU G X, WU Y H, et al. Water Eco-Nexus Cycle System (WaterEcoNet) as a key solution for water shortage and water environment problems in urban areas[J]. Water Cycle, 2020, 1:71-77. [7] LI D Q, HUANG D, GUO C F, et al. Multivariate statistical analysis of temporal-spatial variations in water quality of a constructed wetland purification system in a typical park in Beijing, China[J]. Environ Monit Assess, 2015, 187(1):4219. [8] AO D, LUO L, DZAKPASU M, et al. Replenishment of landscape water with reclaimed water:optimization of supply scheme using transparency as an indicator[J]. Ecol Indic, 2018, 88:503-511. [9] 胡洪营. 中国城镇污水处理与再生利用发展报告[M]. 北京:中国建筑工业出版社, 2021. [10] MARKS J S. Taking the public seriously:the case of potable and non potable reuse[J]. Desalination, 2006, 187(1/2/3):137-147. [11] 何安琪, 何苗, 施汉昌. 城市污水再生回用于景观水体水质安全保障技术[J]. 环境工程, 2006, 24(1):22-23. [12] 李鑫, 胡洪营, 杨佳, 等. 再生水用于景观水体的氮磷水质标准确定[J]. 生态环境学报, 2009, 18(6):2404-2408. [13] AO D, CHEN R, WANG X C, et al. On the risks from sediment and overlying water by replenishing urban landscape ponds with reclaimed wastewater[J]. Environ Pollut, 2018, 236:488-497. [14] 李春丽, 周律, 贾海峰, 等. 再生水景观功能保障系统的试验研究[J]. 给水排水, 2005, 31(8):6-9. [15] MUHID P, DAVIS T W, BUNN S E, et al. Effects of inorganic nutrients in recycled water on freshwater phytoplankton biomass and composition[J]. Water Res, 2013, 47(1):384-394. [16] 梁培瑜, 王烜, 马芳冰. 水动力条件对水体富营养化的影响[J]. 湖泊科学, 2013, 25(4):455-462. [17] LUNG W, PAERL H W. Modeling blue-green algal blooms in the lower neuse river[J]. Water Res, 1988, 22(7):895-905. [18] 曾勇, 杨志峰, 刘静玲. 城市湖泊水华预警模型研究:以北京"六海"为例[J]. 水科学进展, 2007, 18(1):79-85. [19] 王丽燕, 张永春, 蔡金傍. 水动力条件对藻华的影响[J]. 水科学与工程技术, 2008(增刊1):61-62. [20] 黄鹏, 田腾飞, 张文安, 等. 水动力条件对水体中藻类生长的抑制作用[J]. 环境工程, 2018, 36(12):64-69. [21] 朱永青, 卢士强, 林卫青, 等. 饮用水源库合理水力停留时间确定方法研究[J]. 上海环境科学, 2019, 38(5):185-192. [22] DAO G H, WU G X, WANG X X, et al. Enhanced growth and fatty acid accumulation of microalgae Scenedesmus sp. LX1 by two types of auxin[J]. Bioresource Technol, 2018, 247:561-567. [23] SONG K Y, ZHU S F, LU Y, et al. Modelling the thresholds of nitrogen and phosphorus concentrations and hydraulic retention time for bloom control in reclaimed water landscape[J]. Front Env Sci Eng, 2022, 16(10):129. [24] 李颖, 施择, 张榆霞, 等. 关于用藻密度对蓝藻水华程度进行分级评价的方法和运用[J]. 环境与可持续发展, 2014, 39(2):67-68. [25] 牛建敏, 钟昊亮, 熊晔. 美国、欧盟、日本等地污水处理厂水污染物排放标准对比与启示[J]. 资源节约与环保, 2016(6):301-302.
点击查看大图
计量
- 文章访问数: 141
- HTML全文浏览量: 20
- PDF下载量: 8
- 被引次数: 0