DISTRIBUTION CHARACTERISTICS AND POTENTIAL RISK OF HEAVY METALS IN WETLAND FRESHWATER RESTORATION AREA OF THE YELLOW RIVER DELTA
-
摘要: 为评估黄河三角洲国家级自然保护区湿地淡水恢复工程的重金属生态恢复效果,对研究区表层沉积物重金属(As、Cd、Cr、Cu、Pb和Hg)进行监测,并开展了空间分布特征分析、生态风险评估和溯源分析。结果表明:恢复区表层沉积物中As、Cd、Cr、Cu和Pb的平均含量分别为10.22,0.17,40.78,17.75,18.12 mg/kg,Hg未检出。恢复区重金属的RI值<60,呈低生态风险;Cd的Er值为30~60,是主要的潜在生态风险因子。各类恢复湿地生境潜在风险差异显著,其中南部藨草区风险最低,北部生态岛最高。与未恢复区相比,恢复区内重金属含量的空间差异性及聚集效应减弱,且生态风险明显降低,表明恢复工程实施后,湿地水文功能的提升有助于降低重金属的生态风险。此外,沉积物中As、Cd、Cr、Cu和Pb具有高度同源性,其潜在来源主要是油田开采及工农业活动排放污染物。该研究结果可为黄河三角洲生态修复及重金属风险防控提供参考。Abstract: To evaluate the ecological restoration effect of heavy metals in the wetland freshwater restoration project of the Yellow River Delta National Nature Reserve, the heavy metals (As, Cd, Cr, Cu, Pb and Hg) in the surface sediments of the study area were monitored, and the spatial distribution characteristics, ecological risks and potential sources were analyzed. The results showed that the average contents of As, Cd, Cr, Cu and Pb in surface sediments of the restored area were 10.22, 0.17, 40.78, 17.75, 18.12 mg/kg, and Hg was not detected. The RI value of heavy metals in the restored area was lower than 60, indicating low ecological risk; and the Er value of Cd was mainly between 30 and 60, which was the main potential ecological risk factor. The potential risk of each type of restored wetland habitat varied significantly, with the lowest risk in the southern cassis and the highest in the northern ecological island. Compared with the unrestored area, the spatial variability and aggregation effect of heavy metal content in the restoration area was reduced, and the environmental risk was significantly lower, indicating that after the implementation of the restoration project, the improvement of wetland hydrological function would help reduce the ecological risks of heavy metals. In addition, As, Cd, Cr, Cu, and Pb were highly homologous in the sediments, and their potential sources were mainly pollutants discharged from oilfield exploitation and industrial and agricultural activities. The study results could provide a scientific basis for ecological restoration and heavy metal risk prevention and control in the Yellow River Delta.
-
[1] KEDDY P, FRASER L H. Four general principles for the management and conservation of wetlands in large lakes:the role of water levels, nutrients, competitive hierarchies and centrifugal organization[J]. Lakes & Reservoirs:Research & Management, 2000, 5(3):177-185. [2] BAI J H, HUANG L B, YAN D H, et al. Contamination characteristics of heavy metals in wetland soils along a tidal ditch of the Yellow River Estuary, China[J]. Stochastic Environmental Research & Risk Assessment, 2011, 25(5):671-676. [3] 刘志杰, 李培英, 张晓龙, 等. 黄河三角洲滨海湿地表层沉积物重金属区域分布及生态风险评价[J]. 环境科学, 2012, 33(4):1182-1188. [4] CUI B S, ZHANG Q J, ZHANG K J, et al. Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China[J]. Environmental Pollution, 2011, 159(5):1297-1306. [5] 乔吉果, 龙江平, 詹华明, 等. 天津市七里海滨海湿地沉积物重金属元素的空间分布特征[J]. 湿地科学与管理, 2013, 9(4):46-50. [6] MACKIE J A, NATALI S M, LEVINTON J S, et al. Declining metal levels at Foundry Cove (Hudson River, New York):response to localized dredging of contaminated sediments[J]. Environmental Pollution, 2007, 149(2):141-148. [7] TEUCHIES J, BEAUCHARD O, JACOBS S, et al. Evolution of sediment metal concentrations in a tidal marsh restoration project[J]. Science of the Total Environment, 2012, 419(Mar.1):187-195. [8] FENG J X, ZHU X S, WU H, et al. Distribution and ecological risk assessment of heavy metals in surface sediments of a typical restored mangrove-aquaculture wetland in Shenzhen, China[J]. Marine Pollution Bulletin, 2017, 124(2):1033-1039. [9] CHEN W Y, ZHANG L Q, LUAN L. Habitat assessment on wetland restoration project for avian habitats at Nanhui Dongtan, Shanghai[J]. Marine Environmental Science, 2012, 31(4):561-566. [10] ZEDLER J B. Coastal mitigation in southern California:the need for a regional restoration strategy[J]. Ecological Applications, 1996, 6(1):84-93. [11] BERGEN A, ALDERSON C, BERGFORS R, et al. Restoration of a Spartina alterniflorasalt marsh following a fuel oil spill, New York City, NY[J]. Wetlands Ecology & Management, 2000, 8(2/3):185-195. [12] 杨兆平, 高吉喜, 周可新, 等. 生态恢复评价的研究进展[J]. 生态学杂志, 2013, 32(9):2494-2501. [13] 张晓龙, 李培英, 刘月良, 等. 黄河三角洲湿地研究进展[J]. 海洋科学, 2007, 31(7):81-85. [14] LI D L, DING Y Q, YUAN Y, et al. Female tidal mudflat crabs represent a critical food resource for migratory Red-crowned Cranes in the Yellow River Delta, China[J]. Bird Conservation International, 2014, 24(4):416-428. [15] 连煜, 张建军, 王新功. 黄河三角洲生态修复与栖息地保护[J]. 环境影响评价, 2015, 37(3):4. [16] WANG C Y, DU J G, GAO X L, et al. Chemical characterization of naturally weathered oil residues in the sediment from Yellow River Delta, China[J]. Marine Pollution Bulletin, 2011, 62(11):2469-2475. [17] HAKANSON L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14(8):975-1001. [18] 许友泽, 刘锦军, 成应向, 等. 湘江底泥重金属污染特征与生态风险评价[J]. 环境化学, 2016, 35(1):189-198. [19] 王帅, 胡恭任, 于瑞莲, 等. 九龙江河口表层沉积物中重金属污染评价及来源[J]. 环境科学研究, 2014, 27(10):1110-1118. [20] 李祥平, 齐剑英, 王春霖, 等. 云浮Tl污染区水体重金属分布特征及污染评价[J]. 环境科学, 2011, 32(5):1321-1328. [21] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2):112-115. [22] HERNANDEZ-CRESPO C, MARTIN M. Determination of background levels and pollution assessment for seven metals (Cd, Cu, Ni, Pb, Zn, Fe, Mn) in sediments of a Mediterranean coastal lagoon[J]. Catena, 2015, 133:206-214. [23] CARRILLO K C, DROUET J C, RODRIGUEZ-ROMERO A, et al. Spatial distribution and level of contamination of potentially toxic elements in sediments and soils of a biological reserve wetland, northern Amazon region of Ecuador[J]. Journal of Environmental Management, 2021, 289:112495. [24] DUNG T T T, VALERIE C, RUDY S, et al. From geochemical background determination to pollution assessment of heavy metals in sediments and soils[J]. Reviews in Environmental Science & Bio/technology, 2013, 12(4):335-353. [25] 王漫漫. 太湖流域典型河流重金属风险评估及来源解析[D]. 南京:南京大学, 2016. [26] 柴磊, 王新, 马良, 等. 基于PMF模型的兰州耕地土壤重金属来源解析[J]. 中国环境科学, 2020, 40(9):3919-3929. [27] 程珊珊, 沈小雪, 柴民伟, 等. 深圳湾红树林湿地不同生境类型沉积物的重金属分布特征及其生态风险评价[J]. 北京大学学报(自然科学版), 2018, 54(2):415-425. [28] 刘泽正, 汪方芳, 解成杰, 等. 辽河口盐沼湿地表层沉积物重金属污染评价[J]. 北京师范大学学报(自然科学版), 2018, 54(1):144-149. [29] 毕春娟. 长江口滨岸潮滩重金属环境生物地球化学研究[D]. 上海:华东师范大学, 2004. [30] 甘华阳, 梁开, 郑志昌. 珠江口沉积物的重金属背景值及污染评价分区[J]. 地球与环境, 2010, 38(3):344-350. [31] ATTRILL M J, THOMES R M. Heavy metal concentrations in sediment from the Thames Estuary, UK[J]. Marine Pollution Bulletin, 1995, 30(11):742-744. [32] FORSTNER U, MULLER G. Schwermetalle in Flüssen und Seen[M]. Brrlin:Springer, 1974. [33] 李沅蔚, 邹艳梅, 王传远. 黄河三角洲油田区土壤重金属的垂直分布规律及其影响因素[J]. 环境化学, 2019, 38(11):2583-2593. [34] 王腾飞, 谭长银, 曹雪莹, 等. 长期施肥对土壤重金属积累和有效性的影响[J]. 农业环境科学学报, 2017, 36(2):257-263. [35] 陈宝玉, 王洪君, 曹铁华, 等. 不同磷肥浓度下土壤-水稻系统重金属的时空累积特征[J]. 农业环境科学学报, 2010, 29(12):2274-2280. [36] BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils:to mobilize or to immobilize[J]. Journal of Hazardous Materials, 2014, 266:141-166. [37] BAI J J, XIAO R, ZHANG K J, et al. Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China[J]. Journal of Hydrology, 2012(450/451):244-253. [38] WANG Y P, BAI J H, XIAO R, et al. Assessment of heavy metal contamination in the soil-plant system of the Suaeda salsa wetland in the Yellow River Estuary[J]. Acta Ecologica Sinica, 2013, 33(10):3083-3091. [39] 杨艳琴, 王莉霞, 张宏忠, 等. 盐碱化土壤对铅的吸附特性[J]. 江苏农业学报, 2015, 31(5):1031-1036. [40] 杨剑洲, 龚晶晶, 王振亮, 等. 海南岛半干旱区农用地土壤重金属富集因素、健康风险及来源识别[J]. 环境科学, 2022, 43(10):4590-4600. [41] 孙慧, 毕如田, 郭颖, 等. 广东省土壤重金属溯源及污染源解析[J]. 环境科学学报, 2018, 38(2):704-714. [42] 包敏, 宁梓亨. 黄河三角洲北部海域沉积物重金属污染和生态风险评价[J]. 环境与发展, 2020, 32(11):1-3. [43] 吕双燕. 黄河三角洲滨海湿地石油烃和重金属空间分布规律与潜在生态风险研究[D]. 烟台:鲁东大学, 2017. [44] 田莉萍, 孙志高, 王传远, 等. 调水调沙工程黄河口近岸沉积物重金属和砷含量的空间分布及其生态风险评估[J]. 生态学报, 2018, 38(15):5529-5540.
点击查看大图
计量
- 文章访问数: 190
- HTML全文浏览量: 26
- PDF下载量: 6
- 被引次数: 0