ADSORPTION TREATMENT OF SIMULATIVE WASTEWATER CONTAINING CHROMIUM BY MODIFIED POROUS BLUECOKE POWDER
-
摘要: 以低值兰炭末为原料,通过酸洗和微波活化制备了改性多孔兰炭末(MA-BC),并对其吸附处理模拟含Cr(Ⅵ)废水进行了实验研究。采用SEM、N2吸附-脱附测试和FT-IR等分析表征手段对比分析了改性前后兰炭末表面形貌、结构和官能团组成变化。在吸附处理模拟含Cr(Ⅵ)废水实验中,分别考察了MA-BC投加量、模拟废水pH、初始Cr(Ⅵ)浓度、吸附时间对模拟废水中Cr(Ⅵ)去除效果的影响,并对模拟废水中Cr(Ⅵ)吸附过程进行了动力学和热力学分析。结果表明:经酸洗微波加热活化处理的兰炭末比表面积增大到160.69 m2/g,改性后兰炭末表面的-OH、C[CDS1]C和-CH3等官能团含量明显增加。在模拟废水Cr(Ⅵ)初始浓度为100 mg/L,pH为2,MA-BC投加量为2 g,吸附时间210 min的最佳工艺条件下,模拟废水中Cr(Ⅵ)去除率可达到89.21%。该吸附过程以化学吸附为主,服从准二级动力学方程,并符合Langmuir吸附等温线模型,理论吸附量为6.255 mg/g,与实验所测的平衡吸附量相吻合。吸附饱和的改性多孔兰炭末经5次循环再生-吸附,对模拟废水中Cr(Ⅵ)去除率仍保持在80%以上。Abstract: Using low-value blue coke as the raw material, modified porous bluecoke (MA-BC) was prepared by acid washing and microwave activation, and an experimental study on its adsorption treatment of simulated Cr(Ⅵ)-containing wastewater was carried out. The surface morphology and structure and functional groups of the bluecoke powder before and after the modification were compared and analyzed by BET, SEM, N2 adsorption-desorption test, and FT-IR. In the treatment of the simulated Cr(Ⅵ)-containing wastewater, the dosage of MA-BC, simulated wastewater pH, initial concentration of Cr(Ⅵ), and adsorption time were investigated respectively, and the thermodynamics and kinetics for the adsorption process of Cr(Ⅵ) were analyzed. The results showed that the specific surface area of activated bluecoke powder by acid washing and microwave heating increased to 160.69 m2/g, and the content of functional groups, -OH, C=C and -CH3 on the surface of MA-BC significantly increased. Under the optimal process condition that the initial concentration of Cr(Ⅵ) in the simulated wastewater was 100 mg/L, pH was 2, the MA-BC dosage was 2 g, the adsorption time was 210 min, and then the removal rate of Cr(Ⅵ) could reach 89.21%. The main adsorption process belonged to the chemical adsorption, which obeyed the pseudo-second-order kinetic equation and conformed to the Langmuir adsorption isotherm model. The theoretical adsorption capacity was 6.255 mg/g, which was consistent with the equilibrium adsorption capacity of the experiment. After 5 cycles of regeneration and adsorption, the removal rate of Cr(Ⅵ) in simulated wastewater absorbed by MA-BC remained 80% above.
-
Key words:
- modified porous bluecoke powder /
- chromium-containing wastewater /
- adsorption /
- kinetic /
- thermodynamic
-
[1] DOKE K M, KHAN E M. Equilibrium, kinetic and diffusion mechanism of Cr(Ⅵ) adsorption onto activated carbon derived from wood apple shell[J]. Arabian Journal of Chemistry, 2017, 10(1):252-260. [2] PRASAD S, YADAV K K, KUMAR S, et al. Chromium contamination and effect on environmental health and its remediation:a sustainable approaches[J]. Journal of Environmental Management, 2021, 285:112174. [3] VINUTH M, NAIK M M, KARTHIK K, et al. Detailed study on reduction of hazardous Cr(Ⅵ) at acidic pH using modified montmorillonite Fe(Ⅱ)-Mt under ambient conditions[J]. Research on Chemical Intermediates, 2019, 45(4):2357-2368. [4] LIU L H, LIU X, WANG D Q, et al. Removal and reduction of Cr(Ⅵ) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production, 2020, 257:120562. [5] 王海, 阳柠灿, 邱木清. 花生壳生物炭-黏土吸附水中的Cr(Ⅵ)[J]. 无机材料学报, 2020, 35(3):301-308. [6] 杨茸茸, 周军, 吴雷, 等. 可渗透反应墙技术中反应介质的研究进展[J]. 中国环境科学, 2021, 41(10):4579-4587. [7] LI P G, FU T, GAO X Y, et al. Adsorption and reduction transformation behaviors of Cr(Ⅵ) on mesoporous polydopamine/titanium dioxide composite nanospheres[J]. Journal of Chemical & Engineering Data, 2019, 64(6):2686-2696. [8] MOHAN D, PITTMAN CHARLES U J. Activated carbons and low-cost adsorbents for remediation of tri-and hexavalent chromium from water[J]. Journal of Hazardous Materials, 2006, 137(2):762-811. [9] LIU S, CAO L, TIAN X C, et al. Enhanced removal of Cr(Ⅵ) using a modified environment-friendly adsorbent[J]. Water Science & Technology, 2021, 83(3):678-688. [10] 刘剑, 黄莉, 彭钢, 等. 颗粒活性炭载纳米零价铁去除水中的Cr(Ⅵ)[J]. 过程工程学报, 2019, 19(4):714-720. [11] LI L Y, CAO G, ZHU R S. Adsorption of Cr(Ⅵ) from aqueous solution by a litchi shell-based adsorbent[J]. Environmental Research, 2020, 196:110356. [12] 杜珮雯, 党宏钰, 张永祥. 改性沸石和铁粉的复合材料处理水中六价铬的研究[J]. 中国环境科学, 2015, 35(5):1384-1390. [13] 周佳玮, 罗太安, 朱业安, 等. 载铁改性膨润土处理含Cr(Ⅵ)废水试验研究[J]. 湿法冶金, 2016, 35(4):353-356. [14] CHERDCHOOA W, NITHETTHAM S, CHAROENPANICH J. Removal of Cr(Ⅵ) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea[J]. Chemosphere, 2019, 221:758-767. [15] MA H F, YANG J J, GAO X, et al. Removal of chromium (Ⅵ) from water by porous carbon derived from corn straw:influencing factors, regeneration and mechanism[J]. Journal of Hazardous Materials, 2019, 369:550-560. [16] WU L, ZHOU J, YANG R R, et al. Enhanced catalytic microwave pyrolysis of low-rank coal using Fe2O3@bluecoke absorber prepared by a simple mechanical ball milling-ScienceDirect[J]. Journal of the Energy Institute, 2021, 95:193-205. [17] WU L, ZHOU J, YANG R R, et al. Novel approach for enhanced catalytic microwave pyrolysis of low-rank coal[J]. Energy & Fuels, 2020, 34(8):9540-9551. [18] 刘长波, 兰新哲, 田宇红, 等. 炭化温度对兰炭基成型活性炭性能的影响[J]. 煤炭转化, 2012, 35(1):69-72. [19] 段茜, 潘建, 朱德庆, 等. 半焦制备活性炭的新工艺[J]. 钢铁研究学报, 2020, 32(7):661-667. [20] 辛莹娟, 蒋绪, 张昭, 等. 有机/无机酸改性兰炭基活性炭及其对焦化废水的吸附研究[J]. 洁净煤技术, 2020, 26(4):196-202. [21] 马淞江, 罗道成. Ce(SO4)2改性褐煤半焦对废水中Cd(Ⅱ)的吸附效果[J]. 材料保护, 2017, 50(3):74-78. [22] 中华人民共和国生态环境部. 水质六价铬的测定-二苯碳酰二肼分光光度法:GB 7467-1987[S]. 北京,1987. [23] FENG Z Q, CHEN H L, LI H Q, et al. Microwave-assisted KOH activated lignite semi-coke for treatment of biologically treated wastewater from pulp and paper mill[J]. Journal of Environmental Chemical Engineering, 2020, 8(4):103924. [24] SCHNEIDER P. Adsorption isotherms of microporous-mesoporous solids revisited[J]. Applied Catalysis A:General, 1995, 129(2):157-165. [25] 周军, 吴雷, 梁坤, 等. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1):191-197. [26] 武少杰, 郭成, 胡笳, 等. 生物质吸附材料对Cr(Ⅵ)的吸附还原研究进展[J]. 过程工程学报, 2021, 21(12):1383-1394. [27] CHEN Y, ZHANG X M, LIU Q Y, et al. Facile and economical synthesis of porous activated semi-cokes for highly efficient and fast removal of microcystin-LR[J]. Journal of Hazardous Materials, 2015, 299:325-332. [28] 李克斌, 王勤勤, 党艳, 等. 荞麦皮生物吸附去除水中Cr(Ⅵ)的吸附特性和机理[J]. 化学学报, 2012, 70(7):929-937. [29] CHEN R H, CHENG Y Y, WANG P, et al. High efficient removal and mineralization of Cr(Ⅵ) from water by functionalized magnetic fungus nanocomposites[J]. Journal of Central South University, 2020, 27(5):1503-1514. [30] JIANG C L, WANG R, CHEN X, et al. Preparation of chitosan modified fly ash under acid condition and its adsorption mechanism for Cr(Ⅵ) in water[J]. Journal of Central South University, 2021, 28(6):1652-1664. [31] ZENG B Y, XU W B, KHAN S B, et al. Preparation of sludge biochar rich in carboxyl/hydroxyl groups by quenching process and its excellent adsorption performance for Cr(Ⅵ)[J]. Chemosphere, 2021, 285(3/4):131439. [32] JIA D M, CAI H M, DUAN Y Z, et al. Efficient adsorption to hexavalent chromium by iron oxalate modified D301:characterization, performance and mechanisms[J]. Chinese Journal of Chemical Engineering, 2021, 33(5):61-69. [33] KARNJANAKOM S, MANEECHAKR P. Adsorption behaviors and capacities of Cr(Ⅵ) onto environmentally activated carbon modified by cationic (HDTMA and DDAB) surfactants[J]. Journal of Molecular Structure, 2019, 1186:80-90. [34] 石健, 曹澄君, 范素素. 不同环境激素吸附行为及机理的对比研究[J]. 工业安全与环保, 2018, 44(4):104-106. [35] 杨宝滋, 毛磊, 朱小涛, 等. 赋硫活性炭对Cr(Ⅵ)的吸附机理[J]. 环境工程学报, 2016, 10(4):1740-1748. [36] 刘振中, 邓慧萍, 詹健, 等. 改性活性炭除亚砷酸盐的性能研究[J]. 环境科学, 2009, 30(3):780-786. [37] KAR S, EQUEENUDDIN S M. Adsorption of hexavalent chromium using natural goethite:isotherm, thermodynamic and kinetic study[J]. Journal of the Geological Society of India, 2019, 93(3):285-292. [38] SUGASHINI S, BEGUM K M M S. Preparation of activated carbon from carbonized rice husk by ozone activation for Cr(Ⅵ) removal[J]. New Carbon Materials, 2015, 30(3):252-261. [39] 蒋绪, 兰新哲, 景兴鹏, 等. 不同介质下物理法活化制备兰炭基活性炭实验研究[J]. 煤炭转化, 2019, 42(2):65-71.
点击查看大图
计量
- 文章访问数: 132
- HTML全文浏览量: 23
- PDF下载量: 7
- 被引次数: 0