IMPACT OF RAINFALL VARIATION ON NON-POINT SOURCE POLLUTION IN LE'AN RIVER WATERSHED, POYANG LAKE BASIN
-
摘要: 以鄱阳湖典型入湖河流乐安河为例,构建SWAT模型,基于流域2020年土地利用类型空间差异特征,选取2011(枯水年),2014(平水年),2015(丰水年)作为典型降雨年份探究降雨差异对流域营养盐产污规律的影响。结果表明:不同降雨条件下流域营养盐产污负荷顺序为丰水年>平水年>枯水年。下游沿主支分布区域径流量以及中下游德兴-鄱阳万年段的TN和TP对降雨量增加的响应更为敏感;流域径流量对降雨量减少的响应空间差异不显著,婺源-德兴段的TN和TP对降雨量减少的响应程度高,而鄱阳-万年段对降雨量减少的响应程度则较低。研究结果可为流域制定针对性污染控制措施,进一步有效削减入鄱阳湖营养物负荷提供科学参考。Abstract: Taking Le'an River, a typical into-lake river of Poyang Lake as an example, the SWAT model was constructed. Based on the spatial variation characteristics of land use types in the watershed in 2020, the years of 2014 (normal year), 2015 (wet year) and 2011 (dry year) were selected as typical rainfall years to explore the influence of rainfall variation on nutrient pollutants production regulations. The results showed that the nutrients production load of the watershed showed a trend of wet year>normal year>dry year. The runoff along the main branch area downstream, and the TN and TP in the Dexing-Poyang Wannian section in the middle and downstream were more sensitive to the increase of precipitation. The spatial differences in the response in runoff volume to rainfall reduction in the watershed were not significant. The TN and TP in the Wuyuan-Dexing section responded to the decrease in rainfall to a high degree while the response to the decrease in rainfall in the Poyang-Wannian section was lower. The research results will provide scientific reference for the development of targeted pollution control measures in the watershed and further reduce the nutrient load into Poyang Lake effectively.
-
Key words:
- Poyang Lake basin /
- Le'an River Watershed /
- nutrients /
- rainfall variation /
- land use type
-
[1] ZHANG Q Q, XING C, CAI Y Y, et al. How much do human and livestock actually contribute to steroids emission and surface water pollution from past to the future:a global research[J]. Science of the Total Environment,2021,772(10):145558. [2] AMIN M N, KROEZE C, STROKAL M. Human waste:an underestimated source of nutrient pollution in coastal seas of Bangladesh, India and Pakistan[J]. Marine Pollution Bulletin,2017,118(1/2):131-140. [3] 邴永鑫, 卓琼芳, 黄大伟, 等. 某尾矿库泄漏次生突发水环境锑污染事件的应急处置[J]. 环境工程学报,2021,15(9):2888-2894. [4] 黄晋. 基于土地利用的浙江省水污染治理研究[D]. 杭州:浙江大学,2020. [5] 刘岩峰, 崔冠楠, 白鑫宇, 等. 广西武鸣河流域非点源氮磷污染特征及源解析[J]. 中国环境科学,2021,41(6):2821-2830. [6] 宋丹, 杨肃博. 城市水污染现状及防治措施[J]. 科技信息,2014(11):271,276. [7] 伍鹏, 舒倩, 罗小芳, 等. 湘西古丈烂泥田锰矿区地表水污染特征及风险评价[J]. 水土保持通报,2019,39(3):70-74,79. [8] ZHANG S H, HOU X N, WU C S, et al. Impacts of climate and planting structure changes on watershed runoff and nitrogen and phosphorus loss[J]. Science of the Total Environment,2020,706(10):134489. [9] CARKOVIC A B, PASTÉN P A, BONILLA C A. Sediment composition for the assessment of water erosion and nonpoint source pollution in natural and fire-affected landscapes[J]. The Science of the Total Environment,2015,512/513:26-35. [10] CAI Y P, RONG Q Q, YANG Z F, et al. An export coefficient based inexact fuzzy bi-level multi-objective programming model for the management of agricultural nonpoint source pollution under uncertainty[J]. Journal of Hydrology,2018,557:713-715. [11] CORWIN D L, LOAGUE K, ELLSWORTH T R. GIS-based modeling of non-point source pollutants in the vadose zone[J]. Journal of Soil and Water Conservation,1998,53(1):34-38. [12] EDWIN D O, ZHANG X L, YU T. Current status of agricultural and rural non-point source Pollution assessment in China[J]. Environmental Pollution,2009,158(5):1159-1168. [13] 谢德体, 张文, 曹阳. 北美五大湖区面源污染治理经验与启示[J]. 西南大学学报(自然科学版),2008,30(11):81-91. [14] 刘之杰, 路竟华, 方皓, 等. 非点源污染的类型、特征、来源及控制技术[J]. 安徽农学通报(上半月刊),2009,15(5):98-101. [15] OUYANG W, HUANG H B, HAO F H, et al. Evaluating spatial interaction of soil property with non-point source pollution at watershed scale:the phosphorus indicator in Northeast China[J]. Science of the Total Environment,2012,432(15):412-421. [16] FENG M, SHEN Z Y. Assessment of the impacts of land use change on non-point source loading under future climate scenarios using the SWAT model[J]. Water,2021,13(6):22. [17] GARCIA-FAYOS P, BOCHET E. Indication of antagonistic interaction between climate change and erosion on plant species richness and soil properties in semiarid Mediterranean ecosystems[J]. Global Change Biology,2009,15(2):306-318. [18] ZHANG P, LIU Y H, PAN Y, et al. Land use pattern optimization based on CLUE-S and SWAT models for agricultural non-point source pollution control[J]. Mathematical and Computer Modelling,2013,58(3/4):588-595. [19] WANG W, LI Z B, SHI P, et al. Vegetation restoration and agricultural management to mitigate nitrogen pollution in the surface waters of the Dan River, China[J]. Environmental Science and Pollution Research International,2021,28:47136-47148. [20] 曾健辉, 杨福成, 邵明勤, 等. 东鄱阳湖国家湿地公园越冬水鸟多样性及其年际动态[J]. 应用与环境生物学报,2021,27(4):848-854. [21] 刘星根, 段夕跃, 虞慧. 鄱阳湖典型洪泛区水位-水面积、水位-水文连通性的非线性特征[J]. 中国农村水利水电,2021(8):81-89. [22] 梅志刚, 郝玉江, 郑劲松,等. 鄱阳湖长江江豚的现状和保护展望[J]. 湖泊科学,2021,33(5):1289-1298. [23] 刘子豪, 陆建忠, 黄建武, 等. 基于全球气候模式集合的鄱阳湖流域未来潜在蒸散量及其干旱效应研究[J]. 生态学报,2021,41(17):6936-6948. [24] 胡春华, 周文斌, 肖化云, 等. 鄱阳湖富营养化现状及其正态分布特征分析[J]. 人民长江,2010,41(19):64-68. [25] 舒旺, 王鹏, 肖汉玉, 等. 鄱阳湖流域乐安河水化学特征及影响因素[J]. 长江流域资源与环境,2019,28(3):681-690. [26] 练美琪, 李国芳, 冻芳芳, 等. 基于抽站法的乐安河流域合理雨量站网密度研究[J]. 水电能源科学,2018,36(6):10-13. [27] 郭庆冰, 刘文飞, 李凤, 等. 乐安河流域水文气象要素变化特征分析[J]. 中国水土保持,2015(8):60-63. [28] 冯德锃, 吴栋栋, 赵玲玲, 等. 1952-2014年饶河流域水沙变化特征及影响因素[J]. 南水北调与水利科技,2018,16(6):53-59. [29] 吕雅宁, 余杨, 黄爱平, 等. 饶河河口沉积物重金属累积特征及风险评价[J]. 环境科学与技术,2019,42(11):178-186. [30] 余杨, 吕雅宁, 王伟杰, 等. 乐安河中下游重金属时空分布特征及风险评价[J]. 环境科学,2020,41(2):691-701. [31] 郭云鹤, 丁爱中, 于艳新. 乐安河流域城市人群铜膳食暴露及健康风险[J]. 生态环境学报,2017,26(7):1269-1274. [32] 简敏菲, 李玲玉, 徐鹏飞, 等. 鄱阳湖-乐安河湿地水土环境中重金属污染的时空分布特征[J]. 环境科学,2014,35(5):1759-1765. [33] 夏雨, 鄢帮有, 方豫. 鄱阳湖区乐安河流域营养盐负荷影响因素分析[J]. 湖泊科学,2015,27(2):282-288. [34] 夏雨, 黄灵光, 鄢帮有, 等. 乐安河流域面源营养物质输移研究[J]. 长江流域资源与环境,2014,23(4):504-511. [35] WANG Z L, CHEN J C, LAI C G, et al. Hydrologic assessment of the TMPA 3B42-V7 product in a typical alpine and gorge region:the Lancang River basin, China[J]. Hydrology Research,2018,49(6):2002-2015. [36] 王越. 乐安河流域土壤重金属污染评价及影响因素分析[D]. 青岛:山东科技大学,2020. [37] FAO, IIASA, ISRIC, et al. Harmonized World Soil Database (HWSD), version 1.1[M].Italy and IIASA,Laxenbury, 2009. [38] FREER J, BEVEN K, AMBROISE B. Bayesian estimation of uncertainty in runoff prediction and the value of data:an application of the GLUE approach[J]. Water Resources Research,1996,32(7):2161-2173.
点击查看大图
计量
- 文章访问数: 78
- HTML全文浏览量: 8
- PDF下载量: 4
- 被引次数: 0