VARIATION CHARACTERISTICS OF CO2 FLUXES IN THE MAIN STREAM AND TYPICAL TRIBUTARIES OF WANZHOU SECTION OF THE THREE GORGES RESERVOIR
-
摘要: 三峡库区的CO2排放近年来引起了学界的广泛关注,但水华期间的生物化学作用对CO2产生和汇集的影响研究并不多见。以三峡库区万州段干流、典型支流(澎溪河)为研究对象,分析水华期间生化过程对水体中CO2产汇的影响。研究表明:干流、支流CO2浓度和通量与环境因子、生源物质的相关性存在显著空间差异性;支流水体CO2浓度与水温、pH、DO呈显著负相关,与DOC、DTP呈显著正相关;水气界面CO2通量与水温存在显著负相关,与DTP、CO2浓度显著正相关。干流水体CO2浓度与pH显著负相关,与 DIC、DOC、NH+4-N显著正相关;水气界面CO2通量与NH+4-N、CO2浓度显著正相关;高阳、黄石、万州3个点位水气界面CO2通量与各自表层水体CO2浓度变化规律基本一致。藻类会在生长过程中固定CO2,从而促进碳汇。水华过程会造成区域缺氧甚至厌氧,其原因是藻类在水面聚集、堆积、衰亡等一系列过程,使得水中的DO消耗殆尽,为沉积物中微生物提供了分解环境,而沉入沉积物中的有机质部分又为微生物提供了碳源,进而发生矿化作用,生成CO2等温室气体。Abstract: The emission of greenhouse gases in the Three Gorges Reservoir area has attracted much attention in recent years, but the current research lacks the analysis of the impact of biochemical processes during algal blooms on CO2 production and sinks in water body. So this research took the mainstream, Wanzhou Section of Three Gorges Reservoir, and a typical tributary, Pengxi River as the objects to carry out an investigation. The result showed that there were significant spatial differences in the correlation between the main stream and tributary CO2 concentration and flux, environmental factors and biogenic substances.The concentration of CO2 in tributary water was significantly negatively correlated with water temperature, pH and DO, and significantly positively correlated with DOC and DTP. There was a significant negative correlation between CO2 flux at the water-air interface and water temperature, and a significant positive correlation with DTP and CO2 concentration. The concentration of CO2 in the main stream water was negatively correlated with pH, and positively correlated with DIC, DOC, NH+4-N. The CO2 flux at the water-air interface was significantly positively correlated with the concentrations of NH+4-N and CO2. The changes of CO2 fluxes at the water-air interface at Gaoyang, Huangshi, and Wanzhou were basically consistent with the changes of CO2 concentrations in their respective surface waters. Algae fixes CO2 as they grow, boosting carbon sinks. The process of algal bloom will cause regional hypoxia or even anaerobicity. The reason was that algae accumulate, accumulate, and die on the water surface, which consumed the dissolved oxygen in the water and provided a decomposition environment for microorganisms in the sediment. The organic matter that sank into the sediments provided a carbon source for microorganisms, and then mineralization occursed to generate greenhouse gases such as CO2.
-
Key words:
- Three Gorges Reservoir Area /
- main stream /
- tributary /
- nitrogen /
- phosphorus /
- CO2
-
[1] ZHAO Y,WU B F,ZENG Y.Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China[J].Biogeosciences,2013,10(2):1219-1220. [2] HUANG W M,BI Y H,HU Z Y,et al.Spatio-temporal variations of GHG emissions from surface water of Xiangxi River in Three Gorges Reservoir region,China[J].Ecological Engineering,2015,83(83):28-32. [3] MAAVARA T, CHEN W Q, METER K V,et al.River dam impacts on biogeochemical cycling[J].Nature Reviews Earth & Environment,2020,4(1):103-116. [4] 杨正健,刘德富,纪道斌,等.防控支流库湾水华的三峡水库潮汐式生态调度可行性研究[J].水电能源科学,2015,33(12):48-50,109. [5] 中国环境监测总站主编.长江三峡工程生态与环境监测公报[R].北京:国家环境保护总局,2005-07-15(10). [6] 李崇明,黄真理.三峡水库入库污染负荷研究(Ⅱ):蓄水后污染负荷预测[J].长江流域资源与环境,2006,15(1):97-106. [7] 秦宇,张渝阳,李哲,等.三峡澎溪河水华期间水体CH4浓度及其通量变化特征初探[J].环境科学,2018,39(4):1578-1588. [8] 吴兴华,李翀,陈磊,等.三峡水库香溪河库湾拟多甲藻(Peridiniopsis)的昼夜垂直迁移行为对碳磷分布的响应[J].湖泊科学,2018,30(1):121-129. [9] TREMBLAY A,VARFALVY L,ROEHM C,et al. Greenhouse Gas Emissions-Fluxes and Processes[M].2005. [10] BILLEN T,LIBNER P,FISCHER R, et al.Investigating the transfer processes across the free aqueous viscous boundary layer by the controlled flux method[J].Tellus Series B-Chemical and Physical Meteorology,1989,41(2):177-195. [11] 赵颖.水文、气象因子对藻类生长影响作用的试验研究[D].南京:河海大学,2006. [12] 杨博逍.三峡以及金沙江下游水库水气界面温室气体通量对比研究[D].重庆:重庆交通大学,2017. [13] 张莹莹,张经,吴莹,等.长江口溶解氧的分布特征及影响因素研究[J].环境科学,2007,28(8):1649-1654. [14] 杨庆,杨泽凡,胡鹏,等.水体中溶解氧含量与其物理影响因素的实验研究[J].水利学报,2019,50(6):679-686. [15] 胡念三,刘德富,纪道斌,等.三峡水库干流倒灌对支流库湾营养盐分布的影响[J].环境科学与技术,2012,35(10):6-11. [16] 苏青青,纪道斌,崔玉洁,等.蓄水期三峡水库香溪河沉积物-水系统营养盐分布特征[J].环境科学,2018,39(5):2135-2144. [17] 朱爱民,李嗣新,胡俊,等.三峡水库支流拟多甲藻水华的形成机制[J].生态学报,2014,34(11):3071-3080. [18] 姜伟.三峡库区澎溪河高阳平湖水环境及内源磷释放关系研究[D].重庆:西南大学,2017. [19] 姜伟,周川,纪道斌,等.三峡库区澎溪河与磨刀溪电导率等水质特征与水华的关系比较[J].环境科学,2017,38(6):2326-2335. [20] LI S Y,LU X X,BUSH R T.CO2 partial pressure and CO2 emission in the Lower Mekong River[J].Journal of Hydrology,2013,504(24):40-56. [21] 张远,郑丙辉,刘鸿亮,等.三峡水库蓄水后氮、磷营养盐的特征分析[J].水资源保护,2005,21(6):23-26. [22] DEMARTY M,BASTIEN J,TREMBLAY A,et al.Greenhouse gas emissions from boreal reservoirs in Manitoba and Québec,Canada,measured with automated systems[J]. Environmental Science & Technology,2009,43(23):8908-8915. [23] TADONLEKE R D,MARTY J,PLANAS D. Assessing factors underlying variation of CO2 emissions in boreal lakes vs.reservoirs[J].FEMS Microbiology Ecology,2012,79(2):282-297. [24] HALBEDEL S,KOSCHORRECK M.Regulation of CO2 emissions from temperate streams and reservoirs[J].Biogeosciences,2013,10(11):7539-7551. [25] 曹玉平,袁热林,焦树林,等.光照水库夏季分层期间二氧化碳分压分布特征[J].环境科学与技术,2018,41(6):15-21. [26] 赵登忠,谭德宝,李翀,等.隔河岩水库二氧化碳通量时空变化及影响因素[J].环境科学,2017,38(3):954-963. [27] 赵梦,焦树林,梁虹,等.万峰湖水库回水区二氧化碳分压及扩散通量特征时空变化[J].环境化学,2019,38(6):1307-1317. [28] CHISLOCK M F,SARNELLE O,JERNIGAN L M,et al.Do high concentrations of microcystin prevent Daphnia control of phytoplankton?[J].Water Research,2013,47(6):1961-1970. [29] NILSEN E,MORACE J.Foodweb transfer,sediment transport,and biological impacts of emerging and legacy organic contaminants in the lower Columbia River,Oregon and Washington,USA:USGS Contaminants and Habitat (ConHab) Project[J].Science of the Total Environment,2014,484:319-321. [30] 朱旭宇,黄伟,曾江宁,等.氮磷比对冬季浮游植物群落结构的影响[J].应用与环境生物学报,2013,19(2):293-299. [31] SCHINDLER D W.Eutrophication and recovery in experimental lakes:implications for lake management[J].Science,1974,184(4139):897-899. [32] XU H,PAERL H W,QIN B Q,et al.Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China[J].Limnology and Oceanography,2010,55(1):420-423. [33] DAVIS T W,BERRY D L,BOYER G L,et al.The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms[J].Harmful Algae,2009,8(5):715-725. [34] BELGER L,FORSBERG B R,MELACK J M.Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil[J].Biogeochemistry,2011,105(1/3):171-183. [35] HARGRAVE C W,GARY K P,ROSADO S K.Potential effects of elevated atmospheric carbon dioxide on benthic autotrophs and consumers in stream ecosystems:a test using experimental stream mesocosms[J].Global Change Biology,2009,15(11):2779-2790. [36] 赵旭辉,汤龙升,史小丽,等.模拟大气CO2水平升高对春季太湖浮游植物生理特性的影响[J].环境科学,2013,34(6):2126-2133. [37] TROLLE D,STAEHR P A,DAVIDSON T A,et al.Seasonal dynamics of CO flux across the surface of shallow temperate lakes[J].Ecosystems,2012,15(2):1-12.
点击查看大图
计量
- 文章访问数: 86
- HTML全文浏览量: 9
- PDF下载量: 2
- 被引次数: 0