中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶解氧对生物海绵铁体系中海绵铁腐蚀的影响

张琦 王亚娥 李杰 谢慧娜 李园怡

张琦, 王亚娥, 李杰, 谢慧娜, 李园怡. 溶解氧对生物海绵铁体系中海绵铁腐蚀的影响[J]. 环境工程, 2023, 41(2): 60-65. doi: 10.13205/j.hjgc.202302009
引用本文: 张琦, 王亚娥, 李杰, 谢慧娜, 李园怡. 溶解氧对生物海绵铁体系中海绵铁腐蚀的影响[J]. 环境工程, 2023, 41(2): 60-65. doi: 10.13205/j.hjgc.202302009
ZHANG Qi, WANG Ya'e, LI Jie, XIE Huina, LI Yuanyi. EFFECT OF DISSOLVED OXYGEN ON CORROSION OF SPONGE IRON IN BIOLOGICAL SPONGE IRON SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 60-65. doi: 10.13205/j.hjgc.202302009
Citation: ZHANG Qi, WANG Ya'e, LI Jie, XIE Huina, LI Yuanyi. EFFECT OF DISSOLVED OXYGEN ON CORROSION OF SPONGE IRON IN BIOLOGICAL SPONGE IRON SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 60-65. doi: 10.13205/j.hjgc.202302009

溶解氧对生物海绵铁体系中海绵铁腐蚀的影响

doi: 10.13205/j.hjgc.202302009
基金项目: 

国家自然科学基金项目(51768032)

详细信息
    作者简介:

    张琦(1995-),男,硕士研究生,主要研究方向为污水处理。1124636765@qq.com

    通讯作者:

    王亚娥,教授,硕士生导师,主要研究方向为污水处理。wye@mail.lzjtu.cn

EFFECT OF DISSOLVED OXYGEN ON CORROSION OF SPONGE IRON IN BIOLOGICAL SPONGE IRON SYSTEM

  • 摘要: 为了探究溶解氧对生物海绵铁体系海绵铁溶出的影响,将海绵铁介入活性污泥中形成生物海绵铁体系,通过模拟实际反应器中海绵铁的腐蚀状态,测量生物海绵铁体系中总Fe(TFe)含量,研究了溶解氧对海绵铁溶出量的影响,并将海绵铁制作成工作电极介入活性污泥中,利用AUTOLAB电化学工作站研究了溶解氧对生物海绵铁体系中海绵铁腐蚀速率及极化电阻的影响。结果表明:在生物海绵铁体系中,海绵铁的TFe溶出量与反应体系的DO浓度呈正相关,且随着运行时间的增加,影响作用越来越明显。随着活性污泥混合液中溶解氧的增加,腐蚀电位负移,腐蚀电流正移,腐蚀倾向加大,腐蚀效果变强。通过极化曲线及其参数分析得出不同溶解氧浓度下海绵铁极化电阻排序为(6.5±0.5) mg/L<(3.5±0.2) mg/L<(0.5±0.2) mg/L,缺氧条件下,腐蚀阻力较大,溶解氧能够减小极化电阻,促进海绵铁填料的腐蚀。
  • [1] 王文娟. 海绵铁/O2体系类Fenton效应及其对难降解有机物(以苯胺为例)降解效果研究[D].兰州:兰州交通大学,2016.
    [2] 谢慧娜,王亚娥,李杰,等.不同价态铁处理腈纶废水过程中菌群结构分析[J].中国环境科学,2018,38(9):3406-3412.
    [3] 张发奎,徐卫东,李杰,等.PFMF载体强化SBR处理焦化废水效果研究[J].工业水处理,2021,41(4):84-88.
    [4] 谢慧娜. 生物海绵铁体系处理难降解有机物过程中生物强化机制研究[D].兰州:兰州交通大学,2021.
    [5] 李杰,王亚娥,王志盈,等.生物海绵铁在生活污水脱氮除磷中的应用研究[J].中国给水排水,2007,23(1):97-100.
    [6] XIE H N, LI J, WANG Y E, et al. Influencing factors for the Fenton-like of biological sponge iron system and its degradation mechanism of aniline[J]. Process Biochemistry, 2021, 101:230-236.
    [7] SI Z H, SONG X S, WANG Y H, et al. Untangling the nitrate removal pathways for a constructed wetland-sponge iron coupled system and the impacts of sponge iron on a wetland ecosystem[J]. Journal of Hazardous Materials, 2020, 393:122407.
    [8] WANG Q P, LIAO Z Y, YAO D X, et al. Phosphorus immobilization in water and sediment using iron-based materials:a review-ScienceDirect[J]. Science of the Total Environment, 2020,767(1):144246.
    [9] 郑莹, 王亚娥, 牟彪. 具有铁氧化功能的硝基苯降解菌的筛选及特性[J]. 中国环境科学, 2018, 38(5):1837-1843.
    [10] 刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017,37(3):195-206.
    [11] KUKLINSKI A, SAND W. Microbiologically Influenced Corrosion Inhibition[M]//Ota K L, Kreysa G, Savinell R F, eds. Encyclopedia of Applied Electrochemistry. New York, NY, Springer New York, 2014:1290-1297.
    [12] SANCY M, GOURBEYRE Y, SUTTER E, et al. Mechanism of corrosion of cast iron covered by aged corrosion products:application of electrochemical impedance spectrometry[J]. Corrosion Science, 2010, 52(4):1222-1227.
    [13] FU Q, XU J, WEI B X, et al. The effect of nitrate reducing bacteria on the corrosion behavior of X80 pipeline steel in the soil extract solution of Shenyang[J]. International Journal of Pressure Vessels and Piping, 2021,190:104313.
    [14] YANG H Y, LIU Q, CHEN G B, et al. Bio-dissolution of pyrite by Phanerochaete chrysosporium[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(4):766-774.
    [15] WURZLER N, SCHUTTER J D, WAGNER R,et al.Abundance of Fe(Ⅲ) during cultivation affects the microbiologically influenced corrosion (MIC) behaviour of iron reducing bacteria Shewanella putrefaciens[J]. Corrosion Science, 2020, 174(9):108855.
    [16] 夏春兰,吴田,刘海宁,等.铁极化曲线的测定及应用实验研究[J].大学化学, 2003,18(5):38-41.
    [17] 许莹, 王欢欢, 何世宇,等. TiO2纳米管的制备及其性能研究[J]. 钢铁钒钛, 2018,39(4):52-57.
    [18] LV M Y, DU M, LI X, et al. Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria[J]. Journal of Materials Research and Technology, 2019, 8(5):4066-4078.
    [19] 刘晓伟, 谢丹平, 李开明,等. 溶解氧变化对底泥酶活性及微生物多样性的影响[J]. 环境科学与技术, 2013, 36(6):6-11.
    [20] 裘智超, 张玉楠, 叶正荣,等. 控氧对注水井管柱腐蚀行为的影响[J]. 材料保护, 2019,52(5):48-52.
    [21] 董杰,董俊华,韩恩厚,等. 低碳钢带锈电极的腐蚀行为[J]. 腐蚀科学与防护技术, 2006, 18(6):414-417.
    [22] 邢佩, 卢琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究[J]. 材料研究学报, 2016, 30(4):241-247.
    [23] ANDREW F, POURIA G, BURKAN I O, et al. A critical examination of corrosion rate measurement techniques applied to reinforcing steel in concrete[J]. Materials and Corrosion, 2018,69(12):1810263.
    [24] NGUYEN W, DUNCAN J F, DEVINE T M, et al. Electrochemical polarization and impedance of reinforced concrete and hybrid fibre-reinforced concrete under cracked matrix conditions[J]. Electrochimica Acta, 2018, 271:319-336.
    [25] 张倩, 王鹏, 张盾. 溶解氧对304不锈钢的微生物腐蚀的影响[C]//中国腐蚀电化学及测试方法专业委员会2012学术年会论文集.2012:109-110.
  • 加载中
计量
  • 文章访问数:  115
  • HTML全文浏览量:  24
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 网络出版日期:  2023-05-25
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回