AIR POLLUTION STUDY BASED ON APEI IN FUJIAN, CHINA FROM 2013 TO 2018
-
摘要: 为了在区(县、市)级尺度上准确衡量福建省大气污染情况,构建大气污染评价APEI指数。基于高分辨率大气污染数据集和夜间灯光数据,分析2013-2018年福建省78个县市大气污染程度时空变化特征及其影响因素的时空异质性。结果表明:1)福建省中心偏北县市大气污染程度小,东部沿海县市大气污染严重。近6年福建省78.21%的县市大气污染程度减弱;2)全省东部沿海区域空气污染严重,主要表现在NO2和PM10这2种大气污染物,均超过全省平均水平;3)从大气污染物时序变化趋势看,PM2.5和PM10变化相似,自2014年起逐年下降,到2018年分别下降约23.15%和12.21%,SO2和NO2分别下降明显。O3呈U形变化,而CO则呈倒U形变化;4)全省6种大气污染物均呈现较明显的季节性波动特征;5)采用时空加权回归(STWR)模型分析夜间灯光对APEI影响的时空异质性,发现2014-2018年负向影响区域持续扩大;全省34个县市5年回归系数均为正值,表明在这些县市中人类活动易造成大气污染;6)采用APEI、空气质量指数(AQI)、空气质量综合指数(AQCI)分别评价福建省6年各县市综合大气污染程度优劣排序,比较3种方法排序差异最大的县市,发现APEI指数能较好地反映真实浓度大小关系,且能实现实时评价。Abstract: In order to accurately measure the air pollution in Fujian province at the regional (county, city) scale, the APEI index was constructed. Based on high-resolution air pollution data set and nighttime light data, the spatio-temporal variation characteristics of air pollution degree and its influencing factors in 78 counties and cities of Fujian province from 2013 to 2018 were analyzed. Results showed that:1) air pollution degree in the counties and cities in the north of the center of Fujian province is low, and air pollution degree in the coastal counties and cities in the east of Fujian province is serious. In the past 6 years, 78.21% of counties and cities in Fujian province reduced their air pollution; 2) the serious air pollution in the eastern coastal areas of the province is mainly manifested in two kinds of air pollutants, NO2 and PM10, both exceeding the average level of the province; 3) from the time series variation trend of atmospheric pollutants, O3 shows a U-shaped change; PM2.5 and PM10 have similar changes, decreasing year by year from 2014 to 2018 by 23.15% and 12.21% respectively. CO changes in an inverted U shape. SO2 and NO2 decreased, respectively; 4) the six kinds of air pollutants showed obvious seasonal fluctuation; 5) spatio-temporal heterogeneity of the impact of night light on APEI was analyzed by using spatiotemporal weighted regression (STWR) model. It was found that the negative influence area continued to expand from 2014 to 2018. The regression coefficients of 34 counties and cities were all positive in five years, indicating that these counties and cities are prone to air pollution caused by human activities; 6) air quality index (AQI) and air quality composite index (AQCI) are used to evaluate the ranking of the comprehensive air pollution degree in Fujian province in the past six years, and it was found that APEI index could better tell the relationship between the real concentration.
-
[1] 沈楠驰,周丙锋,李珊珊,等.2015-2019年天津市大气污染物时空变化特征及成因分析[J].生态环境学报,2020,29(9):1862-1873. [2] ZHANG F Y, SHI Y, FANG D K, et al. Monitoring history and change trends of ambient air quality in China during the past four decades[J]. Pubmed, 2020, 260:110031. [3] 汪行东. 城市人口规模、城市密度与环境污染:基于主要城市2003-2014年空气质量面板数据的研究[J]. 湖南第一师范学院学报, 2019, 19(3):85-90, 104. [4] 董夏燕, 何庆红. 空气污染与中老年人心理健康的关系研究[J]. 中国经济问题, 2019(5):50-61. [5] 董佳丹, 陈晓玲, 蔡晓斌, 等. 基于中国大气环境监测站点的2015-2019年大气质量状况时空变化分析[J]. 地球信息科学学报, 2020, 22(10):1983-1995. [6] YANG Y, LAN H F, LI J. Spatial econometric analysis of the impact of socioeconomic factors on PM2.5 concentration in China's inland cities:a case study from Chengdu plain economic zone[J]. International Journal of Environmental Research and Public Health, 2019, 17(1):74. [7] HERRERA-MURILLO J, SOTO-MURILLO T, ROJAS-MARIN J F, el at. Water-soluble anions in PM10 samples collected in the metropolitan area of costa rica:temporal and spatial variations[J]. Atmosphere, 2021, 12(10):1264. [8] YAN D, LEI Y L, SHI Y K, et al. Evolution of the spatiotemporal pattern of PM2.5 concentrations in China:a case study from the Beijing-Tianjin-Hebei region[J]. Atmospheric Environment, 2018, 183:225-233. [9] 王成等, 曹靖原, 段小琳, 等. 山西省四城市冬季PM2.5中碳质组分特征及来源分析[J]. 环境工程, 2021, 39(6):114-121. [10] 高振翔, 叶剑, 周红根, 等. 江苏省PM2.5和PM10时空变化特征及其与气象因子的关系[J]. 环境科学与技术, 2020, 43(7):51-58. [11] 李岚淼, 李龙国, 李乃稳. 城市雾霾成因及危害研究进展[J]. 环境工程, 2017, 35(12):92-97,104. [12] 魏文静, 谢炳庚, 周楷淳, 等. 2013-2018年山东省大气PM2.5和PM10污染时空变化及其影响因素[J]. 环境工程, 2020, 38(12):103-111. [13] 高婵娟, 赵啟超, 丁若男, 等. 2018年吉林市大气污染物浓度变化及其与气象因素的相关性分析[J]. 环境工程, 2021, 39(5):71-79. [14] 李杨, 刘永和, 王西岳, 等. 焦作市PM2.5和PM10时空变化特征及其与气象因子的关系[J/OL]. 环境工程:1-13[2022-04-27]. http://kns.cnki.net/kcms/detail/11.2097.X.20220424.1431.008.html. [15] WEN X, CHEN W W, CHEN B, et al. Does the prohibition on open burning of straw mitigate air pollution:an empirical study in Jilin Province of China in the post-harvest season[J]. Elsevier Ltd, 2020,264:110451. [16] SONG Y, LI Z R, YANG T T, et al. Does the expansion of the joint prevention and control area improve the air quality?:evidence from China's Jing-Jin-Ji region and surrounding areas[J].Elsevier Besloten Vennootschap,2020,706:136034. [17] LIU T, WANG C L, WANG Y Y, et al. Impacts of model resolution on predictions of air quality and associated health exposure in Nanjing, China[J]. Pubmed, 2020,249:126515. [18] 王长梅,万大娟,王开心,等.长沙市PM2.5浓度时空分布特征及影响因子分析[J].科学技术与工程,2021,21(12):5157-5165. [19] 王贤彬, 黄亮雄. 夜间灯光数据及其在经济学研究中的应用[J]. 经济学动态, 2018, 59(10):75-87. [20] QUE X, MA X G, MA C, et al. A spatiotemporal weighted regression model (STWR v1. 0) for analyzing local nonstationarity in space and time[J]. Geoscientific Model Development, 2020, 13(12):6149-6164. [21] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M E. Geographically weighted regression:a method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28(4):281-298.
点击查看大图
计量
- 文章访问数: 117
- HTML全文浏览量: 18
- PDF下载量: 9
- 被引次数: 0