SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS OF ATMOSPHERIC POLLUTANTS IN WUHAN FROM 2017 TO 2020
-
摘要: 为进一步了解武汉市大气污染时空分布特征,对2017-2020年武汉市主要大气污染物(PM2.5、PM10、SO2、CO、NO2和O3)进行了空间插值分析、时间变化分析以及与气象要素的相关性分析。结果表明:武汉市近4年环境空气质量达标率为72.98%。PM2.5、PM10、SO2、CO和NO2具有"冬高夏低"的"V"形特征,O3 呈"夏高冬低"的变化趋势。武汉市年均质量浓度超标的大气污染物主要有PM2.5和PM10,但其年均质量浓度均呈下降趋势,而O3是年均质量浓度唯一处于上升状态的大气污染物,今后应重点关注颗粒物与臭氧污染。PM2.5、PM10、SO2、CO和NO2主要集中在武昌区、蔡甸区、青山区、江汉区、江岸区,而O3多聚集在黄陂区、新洲区和江夏区。PM2.5、PM10、SO2、CO和NO2之间均呈显著正相关,O3和其余5种大气污染物均呈显著负相关。平均气温与PM2.5、PM10、SO2、CO和NO2均呈显著负相关,与O3呈显著极强正相关;日照时长与6种污染物均呈显著负相关;平均风速与PM2.5、PM10、SO2、CO和NO2均呈显著负相关,与O3呈显著正相关;相对湿度仅与SO2呈弱相关性。影响武汉市大气污染物的主要气象要素是平均气温和日照时长。Abstract: An investigation on the spatial and temporal distribution characteristics and correlation analysis with meteorological elements were conducted on the main atmospheric pollutants (PM2.5, PM10, SO2, CO, NO2 and O3) in Wuhan from 2017 to 2020, to understand the level of atmospheric pollution in each district of Wuhan. The results were as follows:The overall achievement rate of ambient air quality in Wuhan over the past four years was 72.98%. The pollution of PM2.5, PM10, SO2, CO and NO2 was more serious in winter, and less in summer; the pollution of O3 was more in summer, and less in winter. PM2.5 and PM10 were the exceeding pollutants among the atmospheric pollutants, but the annual average mass concentrations were on a decreasing trend, while O3 was the only air pollutant whose annual average mass concentration was on the rise, so particulate matters and ozone pollution should be paid on more attention in the future. PM2.5, PM10, SO2, CO and NO2 were more concentrated in Wuchang District, Caidian District, Qingshan District, Jianghan District, Jiangan District, and O3 were concentrated in Huangpi District, Xinzhou District and Jiangxia District. PM2.5, PM10, SO2, CO and NO2 were significantly positively correlated with each other, while O3 and these five atmospheric pollutants were significantly negatively correlated. Mean temperature was significantly negatively correlated with PM2.5, PM10, SO2, CO and NO2, and significantly and strongly positively correlated with O3. Sunshine duration was significantly negatively correlated with all six pollutants. Mean wind speed was significantly negatively correlated with PM2.5, PM10, SO2, CO and NO2, and significantly positively correlated with O3. Relative humidity had the least effect on air pollutants and was only weakly correlated with SO2. The main meteorological elements affecting air pollutants in Wuhan were average temperature and sunshine duration.
-
[1] HU J L, WANG Y G, YING Q, et al. Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China[J]. Atmospheric Environment,2014,95:598-609. [2] HUANG R J, ZHANG Y L, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature,2014,514(7521):218-222. [3] LI Y C, LIU X J. How did urban polycentricity and dispersion affect economic productivity? a case study of 306 Chinese cities[J]. Landscape and Urban Planning,2018,173:51-59. [4] 魏复盛,滕恩江,吴国平,等. 我国4个大城市空气PM2.5、PM10污染及其化学组成[J].中国环境监测, 2001,17(7):1-6. [5] CHAN C K, YAO X. Air pollution in mega cities in China[J]. Atmosphere Environment, 2008,42(1):1-42. [6] 曹国良,张小曳,龚山陵,等. 中国区域主要颗粒物及污染气体的排放源清单[J].科学通报, 2011, 56(3):261-268. [7] CAO J J, XU H M, XU Q, et al. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city[J]. Environ Health Perspect,2012,120:373-378. [8] JERRETT M, BURNETT R T, BECKERMAN B S, et al. Spatial analysis of air pollution and mortality in California[J]. Am J Respir Crit Care Med,2013,88:593-599. [9] XIE Y Y, ZHAO B, ZHANG L, et al. Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2,NO2,CO and O3[J]. Particuology,2015,20:141-149. [10] 王芳龙,李忠勤,尤晓妮,等.2015-2017年天水市大气污染物变化特征及来源分析[J].环境科学学报,2018,38(12):4592-4604. [11] 曾鹏,辛存林,于奭,等.典型西南工业城市柳州市核心区大气污染物时空分布与气象因素研究[J].环境科学学报,2020,40(1):13-26. [12] 戴健,程月星,李艳,等.北京市朝阳区大气污染物时空分布特征及与气象要素的关系研究[J].环境保护与循环经济,2017,37(1):55-61. [13] ZHAO S P, YU Y, YIN D Y, et al. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center[J]. Environment International,2016,86:92-106. [14] WANG Y G, YING Q, HU J L, et al. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013-2014[J]. Environment International,2014,73:413-422. [15] 蔡坤,郑泰皓,陈良富,等.河南省2005-2015年NO2和PM2.5时空变化遥感解析[J].中国环境科学,2017,37(12):4417-4427. [16] 史海琪,曾胜兰,李浩楠.四川盆地大气污染物时空分布特征及气象影响因素研究[J].环境科学学报,2020,40(3):763-778. [17] 高婵娟,赵啟超,丁若男,等.2018年吉林市大气污染物浓度变化及其与气象因素的相关性分析[J].环境工程,2021,39(5):71-79. [18] 高正旭,王晓玲,向华,等.武汉市2014-2017年大气污染物分布特征及其潜在来源分析[J].环境科学学报,2018,38(11):4440-4453. [19] 卢进登,柯杰,莫彩芬,等.2017年武汉市城区空气污染物时空分布特征[J].环境科学导刊,2018,37(6):46-51. [20] 辛艾萱,何超,彭韵曦,等.武汉市大气污染物时空分布与区域传输贡献[J].环境科学与技术,2020,43(9):170-181. [21] 代知广,王毅,金灿,等.武汉市大气污染物时空分布特征与健康风险评价[J].科技创新与生产力,2021(3):34-37. [22] 晏星,马小龙,赵文慧.基于不同插值方法的PM1污染物浓度研究[J].测绘,2010,33(4):172-175. [23] 吴蒙,彭慧萍,范绍佳,等.珠江三角洲区域空气质量的时空变化特征[J].环境科学与技术,2015,38(2):77-82. [24] 王无为,黄建武,龚胜生,等.2016年武汉市大气污染物时空分布特征及影响因素[J].环境监测管理与技术,2018,30(6):20-24. [25] BUHR M,PARRISH D,ELLIOT J,et al. Evaluation of ozone precursorsource types using principal component analysis of ambient air measurements in rural Alabama[J]. Journal of Geophysical Research Atmospheres,1995, 1002(D11):22853-22860. [26] 张子曰,李艳,戴高菊,等.北京市朝阳区主要大气污染物浓度变化特征[J].气象与环境学报,2016,32(2):44-51. [27] 朱常琳,李夏清,李富渊. 西安市主要大气污染物浓度变化特征及相关特性分析[J].环境工程,2017,35(11):104-109. [28] 石玉珍,徐永福,王庚辰,等.北京市夏季O3、NO<em>x等污染物"周末效应"研究[J].环境科学,2009,30(10):2832-2838. [29] 安俊琳,王跃思,李昕,等.北京大气O3与NO<em>x的变化特征[J].生态环境,2008,(4):1420-1424. [30] 周俊佳,梁娟珠.福州市区大气污染物质量浓度时空分布特征分析[J].环境工程,2017,35(2):89-93,173. [31] 肖凯,任学昌,陈仁华.嘉峪关市大气污染物传输特征与潜在源分析[J].环境工程,2021,39(9):92-101,109. [32] 吕钰莲. 武汉市空气质量时空分布特征及气象要素的影响[D].武汉:华中农业大学,2019. [33] XIAO K, WANG Y K, WU G, et al. Spatiotemporal characteristics of air pollutants (PM10, PM2.5, SO2, NO2, O3, and CO) in the inland basin city of Chengdu, Southwest China[J]. Atmosphere,2018,9(2):74. [34] 周君蕊,黄宇,邱培培,等.武汉市大气污染源排放清单及分布特征研究[J].南京信息工程大学学报(自然科学版),2018,10(5):599-605. [35] 朱常琳,孟双双,张荣国.西安市主要大气污染物的相关性分析及时空分布特征[J].环境工程,2017,35(12):86-91. [36] 董佳丹,陈晓玲,蔡晓斌,等.基于中国大气环境监测站点的2015-2019年大气质量状况时空变化分析[J].地球信息科学学报,2020,22(10):1983-1995. [37] RYPDAL K, RIVE N, BERNTSEN T, et al. Climate and air quality driven scenarios of ozone and aerosol precursor abatement[J]. Environ Sci Policy, 2009,12:855-869. [38] 唐斌雁. 京津冀地区近地层臭氧和颗粒物污染相互影响研究[D].成都:成都信息工程大学,2018. [39] 毛卓成,许建明,杨丹丹,等.上海地区PM2.5-O3复合污染特征及气象成因分析[J].中国环境科学,2019,39(7):2730-2738. [40] ANGER A, DESSENS O, XI F M, et al. China's air pollution reduction efforts may result in an increase in surface ozone levels in highly polluted areas[J]. Ambio,2016,45(2):254-265. [41] LI K, JACOB D J, LIAO H, et al. A two-pollutant strategy for improving ozone and particulate air quality in China[J]. Nature Geoscience, 2019,12(11):906-910. [42] 张瑞旭,芮守娟,王伟军,等.气象条件对西安市夏季和冬季近地面大气环境污染特征影响[J].生态环境学报,2020,29(1):165-174. [43] 杨兴川,赵文吉,熊秋林,等.2016年京津冀地区PM2.5时空分布特征及其与气象因素的关系[J].生态环境学报,2017,26(10):1747-1754. [44] 崔梦瑞,白林燕,冯建中,等.京津唐地区臭氧时空分布特征与气象因子的关联性研究[J].环境科学学报,2021,41(2):373-385. [45] 王海畅,吴泽邦,周景博,等.北京上甸子站PM2.5浓度与气象要素关系分析[J].气象与环境学报,2015,31(5):99-104. [46] 沈楠驰,周丙锋,李珊珊,等.2015-2019年天津市大气污染物时空变化特征及成因分析[J].生态环境学报,2020,29(9):1862-1873.
点击查看大图
计量
- 文章访问数: 175
- HTML全文浏览量: 10
- PDF下载量: 26
- 被引次数: 0