CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加入椰丝纤维对灰渣基地聚合物-土壤固化体失水开裂情况的改善

汪懿 周旻 向愉唯 董祎挈 李诗瑶 侯浩波

汪懿, 周旻, 向愉唯, 董祎挈, 李诗瑶, 侯浩波. 加入椰丝纤维对灰渣基地聚合物-土壤固化体失水开裂情况的改善[J]. 环境工程, 2023, 41(2): 106-112,180. doi: 10.13205/j.hjgc.202302015
引用本文: 汪懿, 周旻, 向愉唯, 董祎挈, 李诗瑶, 侯浩波. 加入椰丝纤维对灰渣基地聚合物-土壤固化体失水开裂情况的改善[J]. 环境工程, 2023, 41(2): 106-112,180. doi: 10.13205/j.hjgc.202302015
WANG Yi, ZHOU Min, XIANG Yuwei, DONG Yiqie, LI Shiyao, HOU Haobo. REMISSION OF MOISTURE LOSS AND CRACKING OF BOTTOM ASH BASED GEOPOLYMER-SOIL SOLIDIFIED BLOCKS BY ADDING COCONUT FIBER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 106-112,180. doi: 10.13205/j.hjgc.202302015
Citation: WANG Yi, ZHOU Min, XIANG Yuwei, DONG Yiqie, LI Shiyao, HOU Haobo. REMISSION OF MOISTURE LOSS AND CRACKING OF BOTTOM ASH BASED GEOPOLYMER-SOIL SOLIDIFIED BLOCKS BY ADDING COCONUT FIBER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 106-112,180. doi: 10.13205/j.hjgc.202302015

加入椰丝纤维对灰渣基地聚合物-土壤固化体失水开裂情况的改善

doi: 10.13205/j.hjgc.202302015
基金项目: 

国家重点研发计划项目(2018YFC1801702)

详细信息
    作者简介:

    汪懿(1996-),男,硕士研究生,主要研究方向为固体废物处理与资源化。wyii11@whu.edu.cn

    通讯作者:

    周旻(1978-),男,博士研究生,副教授,主要研究方向为固体废物资源化与环境修复。zhoumin@whu.edu.cn

REMISSION OF MOISTURE LOSS AND CRACKING OF BOTTOM ASH BASED GEOPOLYMER-SOIL SOLIDIFIED BLOCKS BY ADDING COCONUT FIBER

  • 摘要: 针对地聚合物固化重金属污染土壤过程中因水分散失带来的最终形态韧性差、脆性大等问题,探究在灰渣基地聚合物-土壤固化体中添加椰丝纤维改善其失水收缩/开裂情况的可行性。通过模拟春夏交替阶段雨水频繁、夏季连续高温下土壤表面干燥开裂变化趋势,对比有无重金属污染下固化体收缩及开裂情况,探究纤维对固化体的力学强化效果。结果表明:受到重金属侵蚀的土壤失水速度高于原状土9.0%,且在25 d试样中其开裂因子相较原状土提高12.9%,收缩率提高34.6%。通过地聚合物进行固化的土壤抗裂性能得到提升,在连续干燥试验中掺入纤维进行优化的地聚合物固化体开裂因子进一步降低,收缩率降低71.3%,开裂因子仅为原状土的4.9%~5.1%。干湿循环条件下,纤维的掺入促使主裂缝消失,四轮干湿循环后最小开裂因子仅为0.0015,地聚合物-椰丝纤维复合改良污染土壤具有较好的抵抗开裂效果。
  • [1] ZENG G, LIU L, XUE Q, et al. Experimental study of the porosity and permeability of municipal solid waste[J]. Environmental Progress & Sustainable Energy,2017,36(6):1694-1699.
    [2] 陈能场,郑煜基,何晓峰,等.《全国土壤污染状况调查公报》探析[J].农业环境科学学报,2017,36(9):1689-1692.
    [3] JITSANGIAM P, SUWAN T, PIMRAKSA K. Challenge of adopting relatively low strength and self-cured geopolymer for road construction application:a review and primary laboratory study[J]. International Journal of Pavement Engineering, 2021,22(11):1454-1468.
    [4] DOGAN-SAGLAMTIMUR N. Waste foundry sand usage for building material production:a first geopolymer record in material reuse[J]. Advances in Civil Engineering,2018,1:1-10.
    [5] ZHANG D M, SUN F J, LIU T T. Study on preparation of coal gangue-based geopolymer concrete and mechanical properties[J]. Advances in Civil Engineering,2021,1:1-13.
    [6] HU Y, TANG Z, LI W G, et al. Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates[J]. Construction and Building Materials, 2019,226:139-151.
    [7] CHITHAMBAR G A, MUTHUKANNAN M. Investigation on the glass fiber reinforced geopolymer concrete made of M-sand[J]. Journal of Materials and Engineering Structures,2019,6(4):501-512.
    [8] 元成方,李爽. 纤维增强再生骨料混凝土研究综述[J].混凝土,2018(9):31-39.
    [9] MA C K, AWANG A Z, OMAR W. Structural and material performance of geopolymer concrete:a review[J]. Construction and Building Materials,2018,186:90-102.
    [10] LI Y M, HONG C Y, AL BAKRI M M. Structure and properties of clay-based geopolymer cements:a review[J]. Progress in Materials Science,2016,83:595-629.
    [11] MESGARI S, AKBARNEZHAD A, XIAO J Z. Recycled geopolymer aggregates as coarse aggregates for Portland cement concrete and geopolymer concrete:effects on mechanical properties[J]. Construction and Building Materials,2020,236:1-9.
    [12] THANUSHAN K, YOGANANTH Y, SANGEETH P, et al. Strength and durability characteristics of coconut fibre reinforced earth cement blocks[J]. Journal of Natural Fibers, 2019, 18(6):773-788.
    [13] DONG Y Q, Zhou M, Xiang Y W, et al. Barrier effect of coal bottom ash-based geopolymers on soil contaminated by heavy metals[J].RSC ADVANCES,2019,9(49):28695-28703.
    [14] DONG Y Q, ZHOU M, LIANG A N, et al. Synthesis and characterization of the blast furnace cinder-based geopolymer-solidified pile mud[J]. Journal of Testing and Evaluation, 2020,48(4):3281-3299.
    [15] 赵玉青, 陈爱玖, 马军涛, 等. 椰壳纤维再生混凝土抗折强度试验研究[J]. 混凝土, 2018(2):64-67,71.
    [16] 程峰. 重金属侵入下岩土的力学特性及固化机理研究[D]. 长沙:中南大学, 2014.
    [17] RAHMAWATI C, APRILIA S, SAIDI T. The effects of nanosilica on mechanical properties and fracture toughness of geopolymer cement[J]. Polymers,2021,13(13):2178.
    [18] 屈撑囤,马娟,刘咚.气井废弃泥浆微生物-固化复合处理技术[J].环境工程学报,2016,10(6):3180-3184.
    [19] MAZEN A, SAIDA A M, JUMA'A A K, et al. Fabrication, microstructural and mechanical characterization of Luffa Cylindrical Fibre-Reinforced geopolymer composite[J]. Applied Clay Science,2017,143:125-133.
    [20] YE H Z, ZHANG Y, YU Z, et al. Effects of cellulose, hemicellulose, and lignin on the morphology and mechanical properties of metakaolin-based geopolymer[J]. Construction and Building Materials, 2018, 173:10-16.
    [21] ASSAEDI H, SHAIKH F U A, LOW I M. Characterizations of flax fabric reinforced nanoclay-geopolymer composites[J]. Composites Part B, 2016, 95:412-422.
    [22] LIAO L, ZHAO J, ZHANG F. Experimental study on compressive properties of SFRC under high strain rate with different fiber content and aspect ratio[J]. Construction and Building Materials,2020,261:119906.
    [23] 董祎挈. 灰渣基地聚合物-纤维屏障的构建及其重金属固化机理研究[D].武汉:武汉大学,2020.
    [24] SYED H, NERELLA R, MADDURU S R C. Role of coconut coir fiber in concrete[J]. Materials Today:Proceedings.2020,27:1104-1110.
    [25] AHMAD W, FAROOQ S H, USMAN M, et al. Effect of coconut fiber length and content on properties of high strength concrete[J].Materials,2020,13(5):1075.
    [26] 常志璐,裴向军,吴梦秋,等.植物纤维加筋固化土抗压强度和渗透试验研究[J].工程地质学报,2017,25(4):912-191.
  • 加载中
计量
  • 文章访问数:  94
  • HTML全文浏览量:  15
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-10
  • 网络出版日期:  2023-05-25
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回