中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同改性生物炭对农田土壤理化性质及铅、镉钝化的影响机制研究

毛欣宇 翟森茂 姜小三 孙晶晶 于怀志

毛欣宇, 翟森茂, 姜小三, 孙晶晶, 于怀志. 不同改性生物炭对农田土壤理化性质及铅、镉钝化的影响机制研究[J]. 环境工程, 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016
引用本文: 毛欣宇, 翟森茂, 姜小三, 孙晶晶, 于怀志. 不同改性生物炭对农田土壤理化性质及铅、镉钝化的影响机制研究[J]. 环境工程, 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016
MAO Xinyu, ZHAI Senmao, JIANG Xiaosan, SUN Jingjing, YU Huaizhi. EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016
Citation: MAO Xinyu, ZHAI Senmao, JIANG Xiaosan, SUN Jingjing, YU Huaizhi. EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016

不同改性生物炭对农田土壤理化性质及铅、镉钝化的影响机制研究

doi: 10.13205/j.hjgc.202302016
基金项目: 

中央高校基本科研业务费项目(2019B08514)

泰州市科技支撑计划(农业)项目(SNY20208551,SNY20208534)

国家自然科学基金青年项目(51809076)

详细信息
    作者简介:

    毛欣宇,教授,主要研究方向为农业水土环境保护。mxy880731@163.com

    通讯作者:

    毛欣宇,教授,主要研究方向为农业水土环境保护。mxy880731@163.com

EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS

  • 摘要: 改性生物炭是良好的重金属钝化剂。但针对不同生物炭,联合多种方法进行改性后生物炭的吸附性能尚待深入研究,其对土壤理化性质和重金属铅(Pb)、镉(Cd)长期钝化效果的影响也有待研究。选取水稻秸秆、木屑和椰壳为生物炭材,经硝酸-高锰酸钾联合改性后进行表征,明确改性前后生物炭理化性质。开展室内培养实验,将改性生物炭按质量比为2.5%、5%和10%加入受试土壤,培养6个月后,测定土壤理化性质、Pb、Cd形态分布及钝化效率,探讨改性生物炭钝化土壤Pb、Cd的作用机制。结果表明:改性后,不同生物炭的比表面积、孔隙结构和含氧官能团数量均得到不同程度的改善,重金属吸附性能有效增强,以改性椰壳炭最为显著。添加改性生物炭能提高土壤pH并改善土壤结构,当其用量>5%时,土壤阳离子交换量和有机质含量分别提高了15.89 g/kg和5.28 cmol/kg,土壤自身对养分及重金属的固定能力得到了显著提升。改性生物炭-土壤体系主要通过离子交换、络合反应和共沉淀反应等促使土壤有效态Pb、Cd向其潜在活化形态和残渣态转化,转化程度与钝化培养时间和改性生物炭用量呈正相关。受元素特性和竞争吸附作用的影响,土壤Pb2+可被优先吸附,并在2个月内逐渐达到吸附平衡。改性椰壳炭对土壤Pb(1000 mg/kg)、Cd(10 mg/kg)的钝化效果最佳,当用量为10%时,钝化率最高分别可达到59.72%和36.37%。此外,钝化培养过程中,生物炭"老化作用"促使土壤阳离子交换量和有机质含量持续升高,土壤Pb、Cd生物有效性不断降低,且无二次释放风险。相关研究结果表明:添加改性生物炭能改善土壤结构、提升土壤地力并能长期有效地固定土壤Pb、Cd,可在重金属污染土壤的修复中大面积推广应用。
  • [1] 纪文贵, 王珂, 蒙建波, 等. 中国土壤重金属污染状况及其风险评价[J]. 农业研究与应用, 2020, 33(5):22-28.
    [2] 牟珍珍, 孟宪刚, ISLAM R, 等. 生物炭与膨润土对镉吸附性能比较[J]. 环境工程, 2019, 37(11):92-97.
    [3] GONG H B, ZHAO L, RUI X, et al. A review of pristine and modified biochar immobilizing typical heavy metals in soil:applications and challenges[J]. Journal of Hazardous Materials, 2022, 432:128668.
    [4] GHOLIZADEH M, HU X. Removal of heavy metals from soil with biochar composite:a critical review of the mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(5):105830.
    [5] HE L Z, ZHONG H, LIU G X, et al. Remediation of heavy metal contaminated soils by biochar:mechanisms, potential risks and applications in China[J]. Environmental Pollution, 2019, 252(Part A):846-855.
    [6] 兰玉顺, 刘维娜, 王丹, 等. 施用典型有机固废生物炭对土壤重金属生物有效性的影响[J]. 环境工程学报, 2021, 15(8):2701-2710.
    [7] SUN D Z, LI F Y, JIN J W, et al. Qualitative and quantitative investigation on adsorption mechanisms of Cd(Ⅱ) on modified biochar derived from co-pyrolysis of straw and sodium phytate[J]. Science of the Total Environment, 2022, 829:154599.
    [8] 付玉荣, 张衍福, 刘凯, 等. 生物炭对冬小麦土壤理化性质和产量的影响[J]. 济南大学学报(自然科学版), 2022, 36(1):38-44,55.
    [9] 张美芝, 耿煜函, 张薇, 等. 秸秆生物炭在农田中的应用研究综述[J]. 中国农学通报, 2021, 37(21):59-65.
    [10] WANG H, SHAO D G, JI B, et al. Biochar effects on soil properties, water movement and irrigation water use efficiency of cultivated land in Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2022, 829:154520.
    [11] WANG S Y, KWAK J H, ISLAM M S, et al. Biochar surface complexation and Ni(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) adsorption in aqueous solutions depend on feedstock type[J]. Science of the Total Environment, 2020, 712:136538.
    [12] 魏忠平, 朱永乐, 赵楚峒, 等. 生物炭吸附重金属机理及其应用技术研究进展[J]. 土壤通报, 2020, 51(3):741-747.
    [13] GUO X J, WU Y, LI N X, et al. Effects on the complexation of heavy metals onto biochar-derived WEOM extracted from low-temperature pyrolysis[J]. Ecotoxicology and Environmental Safety, 2021, 221:112456.
    [14] HUANG M, LI Z W, LUO N L, et al. Application potential of biochar in environment:insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals[J]. Science of the Total Environment, 2018, 646:220-228.
    [15] 张薇, 陈雪丽, 万书明, 等. 原料和制备条件对农用生物炭特性影响的研究进展[J]. 黑龙江农业科学, 2021(12):107-113.
    [16] XING Y H, LUO X S, LIU S, et al. A novel eco-friendly recycling of food waste for preparing biofilm-attached biochar to remove Cd and Pb in wastewater[J]. Journal of Cleaner Production, 2021, 311:127514.
    [17] 计海洋,汪玉瑛,刘玉学,等. 生物炭及改性生物炭的制备与应用研究进展[J]. 核农学报,2018, 32(11):2281-2287.
    [18] YAKOUT S, DAIFULLAH A, EL-REEFY S. Pore structure characterization of chemically modified biochar derived from rice straw[J]. Environmental Engineering and Management Journal, 2015, 14:473-480.
    [19] GÜZEL F, SAYǦILI H, SAYǦILI G A, et al. Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution[J]. Journal of Cleaner Production, 2017, 144:260-265.
    [20] HUFF M D, KUMAR S, LEE J W. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis[J]. Journal of Environmental Management, 2014, 146:303-308.
    [21] DING Z H, HU X, WAN Y S, et al. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar:batch and column tests[J]. Journal of Industrial & Engineering Chemistry, 2016, 33:239-245.
    [22] LIANG J, YANG Z X, TANG L, et al. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost[J]. Chemosphere, 2017, 181:281-288.
    [23] YAN L L, LIU Y, ZHANG Y D, et al. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline[J]. Bioresource Technology, 2020, 297:122381.
    [24] LIANG H X, DING W, ZHANG H W, et al. A novel lignin-based hierarchical porous carbon for efficient and selective removal of Cr(Ⅵ) from wastewater[J]. International Journal of Biological Macromolecules, 2022, 204:310-320.
    [25] 刘振刚, 夏宇, 孟芋含, 等. 生物质炭材料修复重金属污染土壤的研究进展:修复机理及研究热点分析[J]. 环境工程学报, 2021, 15(4):1140-1148.
    [26] 毛欣宇, 于怀志, 翟森茂, 等. 改性椰壳炭钝化修复农田土壤镉、铅的长期稳定化效果及生态风险评估研究[J]. 环境工程, 2022, 40(4):195-199.
    [27] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000.
    [28] 胡宁静, 骆永明, 宋静. 长江三角洲地区典型土壤对镉的吸附及其与有机质、pH和温度的关系[J]. 土壤学报, 2007, 44(3):437-443.
    [29] ZHONG X, CHEN Z W, LI Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials, 2020, 400:123289.
    [30] 唐行灿, 陈金林. 生物炭对土壤理化和微生物性质影响研究进展[J]. 生态科学, 2018, 37(1):192-199.
    [31] 许云翔, 何莉莉, 刘玉学, 等. 施用生物炭6年后对稻田土壤酶活性及肥力的影响[J]. 应用生态学报, 2019, 30(4):1110-1118.
    [32] ZHANG Q Z,DU Z L,LOU Y L,et al.A one-year short-term biochar application improved carbon accumulation in large macroaggregate fractions[J].Catena,2015, 127:26-31.
    [33] OLADELE S O, ADEYEMO A J, AWODUN M A. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils[J].Geoderma,2019, 336:1-11.
    [34] JIANG X Y, TAN X P, CHENG J, et al. Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubation[J]. Geoderma, 2019, 333:99-107.
    [35] 王志朴, 热则耶, 张大旺, 等. 污泥基生物炭用于土壤中Cr的钝化及作用机制分析[J]. 环境工程, 2021, 39(5):178-183.
    [36] ZHEN H Y, LI J, HUANG C D, et al. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production[J]. Environmental Pollution, 2020, 263(Part A):114552.
    [37] KANG M W, YIBELTAL M, KIM Y H, et al. Enhancement of soil physical properties and soil water retention with biochar-based soil amendments[J]. Science of the Total Environment, 2022, 836:155746.
    [38] GAO L, LI Z H, YI W M, et al. Quantitative contribution of minerals and organics in biochar to Pb(Ⅱ) adsorption:considering the increase of oxygen-containing functional groups[J]. Journal of Cleaner Production, 2021, 325:129328.
    [39] WANG G H, PENG C, TARIQ M, et al. Mechanistic insight and bifunctional study of a sulfide Fe3O4 coated biochar composite for efficient As(Ⅲ) and Pb(Ⅱ) immobilization in soils[J]. Environmental Pollution, 2022, 293:118587.
    [40] UCHIMIYA M, LIMA I M, KLASSON K T, et al. Immobilization of heavy metal ions (Cu Ⅱ, Cd Ⅱ, Ni Ⅱ, and Pb Ⅱ) by broiler litter-derived biochars in water and soil[J]. Journal of Agricultural & Food Chemistry, 2010, 58(9):5538-5544.
    [41] YANG G D, TANG L, ZENG G M, et al. Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon[J]. Chemical Engineering Journal, 2015, 259:854-864.
    [42] CAO X D, MA L, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9):3285-3291.
    [43] XU X Y, CAO X D, ZHAO L. Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions:role of mineral components in biochars[J]. Chemosphere, 2013, 92(8):955-961.
    [44] LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46(3):854-862.
    [45] CUI X Q, HAO H L, ZHANG C K, et al. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars[J]. Science of the Total Environment, 2016, 539:566-575.
    [46] 汪怡, 李莉, 宋豆豆, 等. 玉米秸秆改性生物炭对铜、铅离子的吸附特性[J]. 农业环境科学学报, 2020, 39(6):1303-1313.
    [47] 许端平, 姜紫微, 张朕. 磁性生物炭对铅和镉离子的竞争吸附动力学[J]. 安徽农业科学, 2020, 48(22):67-72.
    [48] LI Q N, LIANG W Y, LIU F, et al. Simultaneous immobilization of arsenic, lead and cadmium by magnesium-aluminum modified biochar in mining soil[J]. Journal of Environmental Management, 2022, 310:114792.
    [49] YANG T T, XU Y M, HUANG Q Q, et al. An efficient biochar synthesized by iron-zinc modified corn straw for simultaneously immobilization Cd in acidic and alkaline soils[J]. Environmental Pollution, 2021, 291:118129.
    [50] JI X W, WAN J, WANG X D, et al. Mixed bacteria-loaded biochar for the immobilization of arsenic, lead, and cadmium in a polluted soil system:effects and mechanisms[J]. Science of the Total Environment, 2022, 811:152112.
    [51] QIAN W, LIANG Y J, ZHANG W X, et al. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil[J]. Journal of Environmental Sciences, 2022, 113:231-241.
    [52] 刘书畅, 黄应平, 熊彪, 等. 不同热解温度制备柚子皮生物炭对Pb(Ⅱ)的吸附机理[J]. 武汉大学学报(理学版), 2020, 66(4):361-368.
    [53] WAN J, ZENG G M, HUANG D L, et al. Rhamnolipid stabilized nano-chlorapatite:synthesis and enhancement effect on Pb-and Cd-immobilization in polluted sediment[J]. Journal of Hazardous Materials, 2018,343:332-339.
    [54] KHANAM R, KUMAR A, NAYAK A K, et al. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil:Bioavailability and potential risk to human health[J]. Science of the Total Environment, 2020, 699:134330.
    [55] 陈昱, 钱云, 梁媛, 等. 生物炭对Cd污染土壤的修复效果与机理[J]. 环境工程学报, 2017, 11(4):2528-2534.
    [56] 张学庆, 费宇红, 田夏, 等. 磷改性生物炭对Pb、Cd复合污染土壤的钝化效果[J]. 环境污染与防治, 2017, 39(9):1017-1020.
    [57] WANG J, SHI L, ZHAI L L, et al. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect:a review[J]. Ecotoxicology and Environmental Safety, 2021, 207:111261.
  • 加载中
计量
  • 文章访问数:  245
  • HTML全文浏览量:  20
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26
  • 网络出版日期:  2023-05-25
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回