CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fenton预氧化促进土壤微生物均衡降解烷烃

徐金兰 田桂永 师启航

徐金兰, 田桂永, 师启航. Fenton预氧化促进土壤微生物均衡降解烷烃[J]. 环境工程, 2023, 41(2): 131-139. doi: 10.13205/j.hjgc.202302018
引用本文: 徐金兰, 田桂永, 师启航. Fenton预氧化促进土壤微生物均衡降解烷烃[J]. 环境工程, 2023, 41(2): 131-139. doi: 10.13205/j.hjgc.202302018
XU Jinlan, TIAN Guiyong, SHI Qihang. ACCELERATION OF VARIOUS ALKANES BALANCED DEGRADATION BY SOIL MICROORGANISMS WITH FENTON PRE-OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 131-139. doi: 10.13205/j.hjgc.202302018
Citation: XU Jinlan, TIAN Guiyong, SHI Qihang. ACCELERATION OF VARIOUS ALKANES BALANCED DEGRADATION BY SOIL MICROORGANISMS WITH FENTON PRE-OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 131-139. doi: 10.13205/j.hjgc.202302018

Fenton预氧化促进土壤微生物均衡降解烷烃

doi: 10.13205/j.hjgc.202302018
基金项目: 

国家自然科学基金项目(51778524)

详细信息
    作者简介:

    徐金兰(1973-),女,教授,主要研究方向为石油污染土壤修复。xujinlan@xauat.edu.cn

    通讯作者:

    徐金兰(1973-),女,教授,主要研究方向为石油污染土壤修复。xujinlan@xauat.edu.cn

ACCELERATION OF VARIOUS ALKANES BALANCED DEGRADATION BY SOIL MICROORGANISMS WITH FENTON PRE-OXIDATION

  • 摘要: 针对石油污染土壤中各类烷烃的生物选择性降解问题,通过多种土壤固相铁Fenton预氧化方式调控土壤微生物群落,探究土壤微生物数量、活性和群落变化对石油烃降解的影响,确定各类烷烃均衡降解的微生物群落特征。结果表明:A45(45 mmol/L柠檬酸)和F8.7(8.7 mmol/L Fe2+)土壤固相铁Fenton预氧化后,土壤微生物代谢活性分别高达0.59 mol/kg(A45)和0.60 mol/kg(F8.7),土壤石油烃残余率分别低至30%(A45)和29%(F8.7)。土壤中形成以不动杆菌属(Acinetobacter)、假单胞菌属(Pseudomonas)为主要优势菌属的土壤微生物群落。土壤微生物多样性高,群落组成丰富,烷烃代谢的功能基因相对丰度高,促进了各类烷烃的均衡降解,各类烷烃的生物降解率均高达60%。
  • [1] 郝春博, 王广才, 董健楠, 等. 石油污染地下水中细菌多样性研究[J]. 环境科学, 2009, 30(8):2464-2472.
    [2] 郑红婷, 张秀霞, 钟哲森,等. 漆酶修复石油污染土壤优化实验[J]. 现代化工, 2017, 37(4):109-112.
    [3] STRECHE C, COCARTA D M, ISTRATE I A, et al. Decontamination of petroleum-contaminated soils using the electrochemical technique:remediation degree and energy consumption[J]. Scientific Reports, 2018, 8:3272.
    [4] 曾琪静, 丁丽, 文方, 等. 优化过硫酸盐体系处理石油类污染土壤[J]. 环境工程, 2019, 37(2):170-174.
    [5] O'BRIEN P L, DESUTTER T M, CASEY F X M, et al. Evaluation of soil function following remediation of petroleum hydrocarbons:a review of current remediation techniques[J]. Current Pollution Reports, 2017, 3:192-205.
    [6] LEE D W, LEE H, KWON B O, et al. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment[J]. Environmental Pollution, 2018, 241:254-264.
    [7] 孙秦川, 王宝山, 谭磊, 等. 青藏高原土壤柴油降解菌的筛选及降解实验研究[J]. 环境工程, 2017, 35(5):167-171.
    [8] XU J L, WANG J, WANG C, et al. Effective oxidation of crude oil in soils by consuming less hydroxyl radical with target iron[J]. Chemical Engineering Journal, 2020, 380:122414.
    [9] SIMPANEN S, DAHL M, GERLACH M, et al. Biostimulation proved to be the most efficient method in the comparison of in situ soil remediation treatments after a simulated oil spill accident[J]. Environmental Science and Pollution Research, 2016, 23(24):25024-25038.
    [10] MARIANO A P, KATAOKA A P D A, ANGELIS D D F D, et al. Laboratory study on the bioremediation of diesel oil contaminated soil from a petrol station[J]. Brazilian Journal of Microbiology, 2007, 38(2):346-353.
    [11] 樊鑫, 刘璐. 生物修复技术在石油污染治理中的应用研究进展[J]. 现代化工, 2021, 41(12):64-68.
    [12] 田西昭, 袁子婷, 宫志强, 等. 复配微生物菌群修复石油污染土壤的实验研究[J]. 环境科学与技术, 2020, 43(增刊2):74-78.
    [13] CHEN Y, LI C, ZHOU Z X, et al. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis[J]. Applied Biochemistry & Biotechnology, 2014, 172:3433-3447.
    [14] ZHANG X Y, KONG D W, LIU X Y, et al. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp[J]. Chemosphere, 2021, 273:129666.
    [15] 田秀梅, 王晓丽, 彭士涛, 等. 一株高效原油降解不动杆菌的筛选及降解特性分析[J]. 环境工程, 2019, 37(6):165-169

    ,95.
    [16] 张辉, 李培军, 王桂燕, 等. 固定化混合菌修复油污染地表水的研究[J]. 环境工程学报, 2008,2(12):1613-1617.
    [17] 王志强, 武强, 叶思源, 等. 地下水石油污染高效生物降解研究[J]. 环境科学, 2005,26(6):63-66.
    [18] GHORBANNEZHAND H, MOGHIMI H, DASTGHEIB S M M. Evaluation of heavy petroleum degradation using bacterial-fungal mixed cultures[J]. Ecotoxicology and Environmental Safety, 2018, 164:434-439.
    [19] 周海霞, 单爱琴, 王莉淋, 等. 石油降解菌的筛选及其降解效率的研究[J]. 环境科学与技术, 2008, 31(10):56-58.
    [20] XU J L, FAN X S, HUANG F D, et al. Iron bound to soil organic matter catalyzes H2O2 to oxidize crude oil in soil[J]. Journal of Hazardous Materials, 2017, 322:516-524.
    [21] 郑园园. 激活嗜油微生物高效修复重度原油污染土壤的实验研究[D]. 西安:西安建筑科技大学, 2021.
    [22] XU J L, XIN L, HUANG T L, et al. Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation[J]. Journal of Environmental Sciences, 2011, 23(11):1873-1879.
    [23] 曹倩倩. 石油污染土壤的固相铁Fenton氧化优化试验研究[D]. 西安:西安建筑科技大学, 2018.
    [24] JHO E H, RYU H, SHIN D, et al. Prediction of landfarming period using degradation kinetics of petroleum hydrocarbons:test with artificially contaminated and field-aged soils and commercially available bacterial cultures[J]. Journal of Soils and Sediments, 2014, 14(1):138-145.
    [25] HAMZAH A, PHAN C W, BAKAR N F A, et al. Biodegradation of crude oil by constructed bacterial consortia and the constituent single bacteria isolated from malaysia[J]. Bioremediation Journal, 2013, 17(1):1-10.
    [26] SUTTON N B, GROTENHUIS T, RIJNAARTS H H. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil[J]. Chemosphere, 2014, 97:64-70.
    [27] XU J L, ZHANG Q J, LI D Y, et al. Rapid degradation of long-chain crude oil in soil by indigenous bacteria using fermented food waste supernatant[J]. Waste Management, 2019, 85:361-373.
    [28] 刘小为, 陈忠林, 沈吉敏, 等. 硫酸钛光度法测定O3/H2O2体系中低浓度H2O2[J]. 中国给水排水, 2010, 26(16):126-129.
    [29] MOHANTY G, MUKHERJI S. Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia[J]. International Biodeterioration & Biodegradation, 2008, 61(3):240-250.
    [30] 贾凌慧, 郑世浩, 孙丽慧, 等. 石油降解低温细菌的筛选及降解特性的表征[J]. 环境工程, 2020, 38(6):252-258.
    [31] XU J L, DU J, LI L, et al. Fast-stimulating bioremediation of macro crude oil in soils using matching Fenton pre-oxidation[J]. Chemosphere, 2020, 252:126622.
    [32] BAJAGAIN R, PARK Y, JEONG S W. Feasibility of oxidation-biodegradation serial foam spraying for total petroleum hydrocarbon removal without soil disturbance[J]. Science of the Total Environment, 2018, 626:1236-1242.
    [33] GONG X B. Remediation of weathered petroleum oil-contaminated soil using a combination of biostimulation and modified Fenton oxidation[J]. International Biodeterioration & Biodegradation, 2012, 70:89-95.
    [34] XU J L, DENG X, CUI Y W, et al. Impact of chemical oxidation on indigenous bacteria and mobilization of nutrients and subsequent bioremediation of crude oil-contaminated soil[J]. Journal of Hazardous Materials, 2016, 320:160-168.
    [35] SANDU C, POPESCU M, ROSALES E, et al. Electrokinetic-Fenton technology for the remediation of hydrocarbons historically polluted sites[J]. Chemosphere, 2016, 156:347-356.
    [36] BAJAGAIN R, LEE S, JEONG S W. Application of persulfate-oxidation foam spraying as a bioremediation pretreatment for diesel oil-contaminated soil[J]. Chemosphere, 2018, 207:565-572.
    [37] FENG L Y, JIANG X P, HUANG Y N, et al. Petroleum hydrocarbon-contaminated soil bioremediation assisted by isolated bacterial consortium and sophorolipid[J]. Environmental Pollution, 2021, 273:116476.
    [38] LI X F, ZHAO L, ADAM M. Biodegradation of marine crude oil pollution using a salt-tolerant bacterial consortium isolated from Bohai Bay, China[J]. Marine Pollution Bulletin, 2016, 105(1):43-50.
    [39] DAI X L, LV J, YAN G X, et al. Bioremediation of intertidal zones polluted by heavy oil spilling using immobilized laccase-bacteria consortium[J]. Bioresource Technology, 2020, 309:123305.
    [40] NIE Y, LIANG J L, FANG H, et al. Characterization of a CYP153 alkane hydroxylase gene in a Gram-positive Dietzia sp. DQ12-45-1b and its "team role" with alkW1 in alkane degradation[J]. Applied Microbiology & Biotechnology, 2014, 98(1):163-173.
    [41] QIN G, GONG D, FAN M Y. Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar[J]. International Biodeterioration & Biodegradation, 2013, 85:150-155.
    [42] 姜睿玲, 杨统一, 唐玉斌, 等. 多环芳烃污染对桑园土壤微生物结构及种群多样性的影响[J]. 中国环境科学, 2012, 32(9):1655-1661.
    [43] 张博凡, 熊鑫, 韩卓, 等. 菌糠强化微生物降解石油污染土壤修复研究[J]. 中国环境科学, 2019, 39(3):1139-1146.
    [44] 郑瑾, 王馨妤, 李杰, 等. 腐植酸改性生物质电厂灰固定化微生物修复石油烃污染土壤[J]. 环境工程, 2020, 38(8):34-40.
    [45] 徐苗, 段魏魏, 赵亚光, 等. 石油污染土壤理化性质对微生物代谢特征的影响[J]. 环境工程, 2018, 36(2):178-183.
    [46] 吴蔓莉, 陈凯丽, 叶茜琼, 等. 堆肥-生物强化对重度石油污染土壤的修复作用[J]. 环境科学, 2017, 38(10):4412-4419.
    [47] 吴蔓莉, 李可欣, 侯爽爽, 等. 贫养分低有机质黄绵土中石油烃的生物去除特性及菌群结构变化[J]. 环境科学研究, 2021, 34(8):1961-1970.
    [48] 邓春萍, 龚汉意, 杜国勇, 等. 重复接种菌群强化修复石油污染土壤[J]. 环境科学与技术, 2021, 44(9):127-134.
    [49] 王佳楠, 石妍云, 郑力燕, 等. 石油降解菌的分离鉴定及4株芽孢杆菌种间效应[J]. 环境科学, 2015, 36(6):2245-2251.
    [50] TIWARI B, MANICKAM N, KUMARI S, et al. Biodegradation and dissolution of polyaromatic hydrocarbons by Stenotrophomonas sp[J]. Bioresource Technology, 2016, 216:1102-1105.
    [51] 荆佳维, 王卅, 郭书海. 典型油田区油污土壤微生物群落区域性分布研究[J]. 环境科学学报, 2021, 41(11):4660-4675.
  • 加载中
计量
  • 文章访问数:  106
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 网络出版日期:  2023-05-25
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回