[1] |
SURESH S, BANDOSZ T J. Removal of formaldehyde on carbon-based materials:a review of the recent approaches and findings[J]. Carbon, 2018, 137:207-221.
|
[2] |
TANG X J, BAI Y, DUONG A, et al. Formaldehyde in China:production, consumption, exposure levels, and health effects[J]. Environment International, 2009, 35(8):1210-1224.
|
[3] |
ROBERT B, NALLATHAMBI G. Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes:a review[J]. Environmental Chemistry Letters, 2021, 19(3):2551-2579.
|
[4] |
de FALCO G, LI W L, CIMINO S, et al. Role of sulfur and nitrogen surface groups in adsorption of formaldehyde on nanoporous carbons[J]. Carbon, 2018, 138:283-291.
|
[5] |
LE Y, GUO D P, CHENG B, et al. Bio-template-assisted synthesis of hierarchically hollow SiO2 microtubes and their enhanced formaldehyde adsorption performance[J]. Applied Surface Science, 2013, 274:110-116.
|
[6] |
MAMAGHANI A H, HAGHIGHAT F, LEE C S. Photocatalytic oxidation technology for indoor environment air purification:the state-of-the-art[J]. Applied Catalysis B:Environmental, 2017, 203:247-269.
|
[7] |
FARHANIAN D, HAGHIGHAT F. Photocatalytic oxidation air cleaner:identification and quantification of by-products[J]. Building and Environment, 2014, 72:34-43.
|
[8] |
BAHRI M, HAGHIGHAT F, ROHANI S, et al. Impact of design parameters on the performance of non-thermal plasma air purification system[J]. Chemical Engineering Journal, 2016, 302:204-212.
|
[9] |
HU X L, LI C Q, SONG J Y, et al. Multidimensional assembly of oxygen vacancy-rich amorphous TiO2-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light[J]. Journal of Collaid and Interface Science, 2020, 574:61-73.
|
[10] |
ZHANG L, MOHAMED H H, DILLERT R, et al. Kinetics and mechanisms of charge transfer processes in photocatalytic systems:a review[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2012, 13(4):263-276.
|
[11] |
LIU S H, LIN W X. A simple method to prepare g-C3N4-TiO2/waste zeolites as visible-light-responsive photocatalytic coatings for degradation of indoor formaldehyde[J]. Journal of Hazardous Materials, 2019, 368:468-476.
|
[12] |
CHEN Q H, WU S, XIN Y J. Synthesis of Au-CuS-TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline[J]. Chemical Engineering Journal, 2016, 302:377-387.
|
[13] |
ZOU Q, LI H, YANG Y P, et al. Bi2O3/TiO2 photocatalytic film coated on floated glass balls for efficient removal of organic pollutant[J]. Applied Surface Science, 2019, 467/468:354-360.
|
[14] |
XU F Y, LE Y, CHENG B, et al. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature[J]. Applied Surface Science, 2017, 426:333-341.
|
[15] |
CHAKINALA N, GOGATE P R, CHAKINALA A G. Highly efficient bi-metallic bismuth-silver doped TiO2 photocatalyst for dye degradation[J]. Korean Journal of Chemical Engineering, 2021, 38(12):2468-2478.
|
[16] |
RENGARAJ S, LI X Z. Enhanced photocatalytic reduction reaction over Bi3+-TiO2 nanoparticles in presence of formic acid as a hole scavenger[J]. Chemosphere, 2007, 66(5):930-938.
|
[17] |
ZHANG L, YU D Y, WU M H, et al. Fabrication of Ag3PO4/TiO2 composite and its photodegradation of formaldehyde under solar radiation[J]. Catalysis Letters, 2019, 149(3):882-890.
|
[18] |
ZHOU T, XU D, LU M, et al. MOF derived Bi2MoO6/TiO2 nanohybrids:enhanced photocatalytic activity for Rhodamine B degradation under sunlike irradiation[J]. Research on Chemical Intermediates, 2018, 44(10):6431-6444.
|
[19] |
WANG X F, LI S F, YU H G, et al. Ag2O as a new visible-light photocatalyst:self-stability and high photocatalytic activity[J]. Chemistry, 2011, 17(28):7777-7780.
|
[20] |
CHEN D, SHI J, SHEN H Y. High-dispersed catalysts of core-shell structured Au@SiO2 for formaldehyde catalytic oxidation[J]. Chemical Engineering Journal, 2020, 385:123887.
|
[21] |
LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Materials, 2011, 10(12):911-921.
|
[22] |
LOW J, YU J G, LI Q, et al. Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi2WO6 nanosheets[J]. Physical Chemistry Chemical Physics, 2014, 16(3):1111-1120.
|
[23] |
CUSHING S K, CHEN C J, DONG C L, et al. Tunable nonthermal distribution of hot electrons in a semiconductor injected from a plasmonic gold nanostructure[J]. ACS Nano, 2018, 12(7):7117-7126.
|
[24] |
JIANG Z Y, ZHANG X H, YUAN Z M, et al. Enhanced photocatalytic CO2 reduction via the synergistic effect between Ag and activated carbon in TiO2/AC-Ag ternary composite[J]. Chemical Engineering Journal, 2018, 348:592-598.
|
[25] |
LI H Y, WANG D J, WANG P, et al. Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse bi-doped TiO2 nanospheres[J]. Chemistry, 2009, 15(45):12521-12527.
|
[26] |
SOOD S, MEHTA S K, SINHA A S K, et al. Bi2O3/TiO2 heterostructures:synthesis, characterization and their application in solar light mediated photocatalyzed degradation of an antibiotic, ofloxacin[J]. Chemical Engineering Journal, 2016, 290:45-52.
|
[27] |
LAI M, ZHAO J, CHEN Q C, et al. Photocatalytic toluene degradation over Bi-decorated TiO2:promoted O2 supply to catalyst's surface by metallic Bi[J]. Catalysis Today, 2019, 335:372-380.
|
[28] |
LI X, LI H, HUANG Y, et al. Exploring the photocatalytic conversion mechanism of gaseous formaldehyde degradation on TiO2-x-OV surface[J]. Journal of Hazardous Materials, 2022, 424(Pt A):127217.
|
[29] |
WANG N, LI X, YANG Y L, et al. Enhanced photocatalytic degradation of sulfamethazine by Bi-doped TiO2 nano-composites supported by powdered activated carbon under visible light irradiation[J]. Separation and Purification Technology, 2019, 211:673-683.
|
[30] |
李雪, 刘婷婷, 陶喜洋, 等. O-C3N4/Ag2O p-n异质结光催化剂增强可见光降解有机物[J]. 西安工程大学学报, 2021, 35(3):1-8.
|
[31] |
许洋, 蒲生彦, 季雯雯, 等. Ag/Ag2O/g-C3N4/BiVO4复合光催化体系降解盐酸四环素机理研究[J]. 环境科学研究, 2021, 34(12):2841-2849.
|
[32] |
KUBACKA A, MUÑOZ-BATISTA M J, FERRER M, et al. UV and visible light optimization of anatase TiO2 antimicrobial properties:surface deposition of metal and oxide (Cu, Zn, Ag) species[J]. Applied Catalysis B:Environmental, 2013, 140/141:680-690.
|
[33] |
ŠILJEGOVIĆ M, KAČAREVIĆ-POPOVIĆ Z M, KRKLJEŠ A N, et al. Effect of N4+ and C4+ ion beam bombardment on the optical and structural characteristics of ethylene-norbornene copolymer (TOPAS)[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2011, 269(7):708-715.
|
[34] |
王星, 牟科全, 袁方, 等. Ag/Ag2O的合成及可见光催化性能研究[J]. 应用化工, 2021, 50(11):3036-3039,3043.
|
[35] |
龚洁, 赵凤怡, 邹曦, 等. g-C3N4/Ag2O复合光催化剂的制备及其近红外光催化性能[J]. 武汉科技大学学报, 2021, 44(2):100-106.
|
[36] |
LIU Y B, ZHU G Q, GAO J Z, et al. Enhanced photocatalytic activity of Bi4Ti3O12 nanosheets by Fe3+-doping and the addition of Au nanoparticles:photodegradation of Phenol and bisphenol A[J]. Applied Catalysis B:Environmental, 2017, 200:72-82.
|
[37] |
SENTHIL R A, THEERTHAGIRI J, SELVI A, et al. Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation[J]. Optical Materials, 2017, 64:533-539.
|
[38] |
HUANG Q, YE J, SI H, et al. Differences of characteristics and performance with Bi3+ and Bi2O3 doping over TiO2 for photocatalytic oxidation under visible light[J]. Catalysis Letters, 2019, 150(4):1098-1110.
|
[39] |
杜立杰. 基于三元复合材料g-C3N4/TiO2/BiVO4的制备及甲醛降解规律研究[D]. 保定:河北大学, 2021.
|
[40] |
AN G, ZHU J, HUANG Q, et al. Synergistic effect of photo-thermal oxidation for a low concentration of HCHO over Bi3+-TiO2/MnFeO<em>x catalysts at ambient temperature[J]. Environmental Science and Pollution Research, 2022.
|
[41] |
HUANG Q, WANG Q, TAO T, et al. Controlled synthesis of Bi2O3/TiO2 catalysts with mixed alcohols for the photocatalytic oxidation of HCHO[J]. Environment Technology, 2019, 40(15):1937-1947.
|
[42] |
MIARALIPOUR S, FRIEDMANN D, SCOTT J, et al. TiO2/porous adsorbents:recent advances and novel applications[J]. Journal of Hazardous Materials, 2018, 341:404-423.
|
[43] |
KUO C Y, WU C H, WU J T, et al. Synthesis and characterization of a phosphorus-doped TiO2 immobilized bed for the photodegradation of bisphenol A under UV and sunlight irradiation[J]. Reaction Kinetics, Mechanisms and Catalysis, 2014, 114(2):753-766.
|
[44] |
XU Z H, YU J G, JARONIEC M. Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt[J]. Applied Catalysis B:Environmental, 2015, 163:306-312.
|
[45] |
YAN Z X, XU Z H, YU J G, et al. Highly active mesoporous ferrihydrite supported Pt catalyst for formaldehyde removal at room temperature[J]. Environmental Science & Technology, 2015, 49(11):6637-6644.
|
[46] |
QI L F, CHENG B, YU J G, et al. High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature[J]. Journal of Hazardous Materials, 2016, 301:522-530.
|