中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

银-铋修饰TiO2纳米材料可见光催化剂制备及降解甲醛性能分析

孙月吟 黄琼 周婕 于小萌 朱杰 顾名扬 徐笠芮 杨波 陶涛

孙月吟, 黄琼, 周婕, 于小萌, 朱杰, 顾名扬, 徐笠芮, 杨波, 陶涛. 银-铋修饰TiO2纳米材料可见光催化剂制备及降解甲醛性能分析[J]. 环境工程, 2023, 41(2): 146-155. doi: 10.13205/j.hjgc.202302020
引用本文: 孙月吟, 黄琼, 周婕, 于小萌, 朱杰, 顾名扬, 徐笠芮, 杨波, 陶涛. 银-铋修饰TiO2纳米材料可见光催化剂制备及降解甲醛性能分析[J]. 环境工程, 2023, 41(2): 146-155. doi: 10.13205/j.hjgc.202302020
SUN Yueyin, HUANG Qiong, ZHOU Jie, YU Xiaomeng, ZHU Jie, GU Mingyang, XU Lirui, YANG Bo, TAO Tao. PREPARATION OF VISIBLE LIGHT CATALYST AND PERFORMANCE ANALYSIS OF FORMALDEHYDE DEGRADATION OVER SILVER-BISMUTH MODIFIED TiO2 NANOMATERIAL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 146-155. doi: 10.13205/j.hjgc.202302020
Citation: SUN Yueyin, HUANG Qiong, ZHOU Jie, YU Xiaomeng, ZHU Jie, GU Mingyang, XU Lirui, YANG Bo, TAO Tao. PREPARATION OF VISIBLE LIGHT CATALYST AND PERFORMANCE ANALYSIS OF FORMALDEHYDE DEGRADATION OVER SILVER-BISMUTH MODIFIED TiO2 NANOMATERIAL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 146-155. doi: 10.13205/j.hjgc.202302020

银-铋修饰TiO2纳米材料可见光催化剂制备及降解甲醛性能分析

doi: 10.13205/j.hjgc.202302020
基金项目: 

国家自然科学基金项目(21501097, 51902166)

江苏省自然科学基金(BK20201389, BK20190786, BK20170954)

江苏省高等学校"青蓝工程"和江苏省高等学校重点学科建设项目(PAPD)

详细信息
    作者简介:

    孙月吟(1997-),女,硕士,主要研究方向为光催化氧化技术。sunyueyin1018@163.com

    通讯作者:

    黄琼(1984-),男,副教授,主要研究方向为工业VOCs催化燃烧技术和光热协同催化氧化VOCs。hqhaixia@163.com

PREPARATION OF VISIBLE LIGHT CATALYST AND PERFORMANCE ANALYSIS OF FORMALDEHYDE DEGRADATION OVER SILVER-BISMUTH MODIFIED TiO2 NANOMATERIAL

  • 摘要: 预防和控制低浓度气态甲醛(HCHO)仍是室内环境污染所面临的巨大挑战之一,设计合成吸附能力强、催化氧化性能高、稳定性好的催化剂具有重要的实际应用价值。采用水热法和溶胶-凝胶法制备了一系列Ag-Bi共掺杂的纳米结构Ag/Bi-TiO2光催化剂,用于在可见光、无动力条件下催化降解室内低浓度气态甲醛。并采用XRD、SEM、BET、H2-TPR、UV-vis、XPS等技术对所制催化剂进行表征分析,考察了制备方法、Ag-Bi掺入量、煅烧温度等条件对催化剂可见光催化氧化性能的影响。结果发现:水热法制得的Ag/Bi-TiO2-H催化剂降解甲醛效果最佳,其48h降解率可达到94.1%,可将浓度为1.076 mg/m3的甲醛降低至0.093 mg/m3,显著提升了TiO2的催化氧化性能,其Ag2O/Ag、Bi3+和TiO2间的协同耦合作用改善了催化剂的微观结构,增强其对可见光的吸收,促进了光生电子的形成及转移。表面羟基以及耦合作用所形成的吸附氧提升了低浓度甲醛的吸附与催化氧化降解能力,且该催化剂展示出优异的稳定性能。
  • [1] SURESH S, BANDOSZ T J. Removal of formaldehyde on carbon-based materials:a review of the recent approaches and findings[J]. Carbon, 2018, 137:207-221.
    [2] TANG X J, BAI Y, DUONG A, et al. Formaldehyde in China:production, consumption, exposure levels, and health effects[J]. Environment International, 2009, 35(8):1210-1224.
    [3] ROBERT B, NALLATHAMBI G. Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes:a review[J]. Environmental Chemistry Letters, 2021, 19(3):2551-2579.
    [4] de FALCO G, LI W L, CIMINO S, et al. Role of sulfur and nitrogen surface groups in adsorption of formaldehyde on nanoporous carbons[J]. Carbon, 2018, 138:283-291.
    [5] LE Y, GUO D P, CHENG B, et al. Bio-template-assisted synthesis of hierarchically hollow SiO2 microtubes and their enhanced formaldehyde adsorption performance[J]. Applied Surface Science, 2013, 274:110-116.
    [6] MAMAGHANI A H, HAGHIGHAT F, LEE C S. Photocatalytic oxidation technology for indoor environment air purification:the state-of-the-art[J]. Applied Catalysis B:Environmental, 2017, 203:247-269.
    [7] FARHANIAN D, HAGHIGHAT F. Photocatalytic oxidation air cleaner:identification and quantification of by-products[J]. Building and Environment, 2014, 72:34-43.
    [8] BAHRI M, HAGHIGHAT F, ROHANI S, et al. Impact of design parameters on the performance of non-thermal plasma air purification system[J]. Chemical Engineering Journal, 2016, 302:204-212.
    [9] HU X L, LI C Q, SONG J Y, et al. Multidimensional assembly of oxygen vacancy-rich amorphous TiO2-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light[J]. Journal of Collaid and Interface Science, 2020, 574:61-73.
    [10] ZHANG L, MOHAMED H H, DILLERT R, et al. Kinetics and mechanisms of charge transfer processes in photocatalytic systems:a review[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2012, 13(4):263-276.
    [11] LIU S H, LIN W X. A simple method to prepare g-C3N4-TiO2/waste zeolites as visible-light-responsive photocatalytic coatings for degradation of indoor formaldehyde[J]. Journal of Hazardous Materials, 2019, 368:468-476.
    [12] CHEN Q H, WU S, XIN Y J. Synthesis of Au-CuS-TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline[J]. Chemical Engineering Journal, 2016, 302:377-387.
    [13] ZOU Q, LI H, YANG Y P, et al. Bi2O3/TiO2 photocatalytic film coated on floated glass balls for efficient removal of organic pollutant[J]. Applied Surface Science, 2019, 467/468:354-360.
    [14] XU F Y, LE Y, CHENG B, et al. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature[J]. Applied Surface Science, 2017, 426:333-341.
    [15] CHAKINALA N, GOGATE P R, CHAKINALA A G. Highly efficient bi-metallic bismuth-silver doped TiO2 photocatalyst for dye degradation[J]. Korean Journal of Chemical Engineering, 2021, 38(12):2468-2478.
    [16] RENGARAJ S, LI X Z. Enhanced photocatalytic reduction reaction over Bi3+-TiO2 nanoparticles in presence of formic acid as a hole scavenger[J]. Chemosphere, 2007, 66(5):930-938.
    [17] ZHANG L, YU D Y, WU M H, et al. Fabrication of Ag3PO4/TiO2 composite and its photodegradation of formaldehyde under solar radiation[J]. Catalysis Letters, 2019, 149(3):882-890.
    [18] ZHOU T, XU D, LU M, et al. MOF derived Bi2MoO6/TiO2 nanohybrids:enhanced photocatalytic activity for Rhodamine B degradation under sunlike irradiation[J]. Research on Chemical Intermediates, 2018, 44(10):6431-6444.
    [19] WANG X F, LI S F, YU H G, et al. Ag2O as a new visible-light photocatalyst:self-stability and high photocatalytic activity[J]. Chemistry, 2011, 17(28):7777-7780.
    [20] CHEN D, SHI J, SHEN H Y. High-dispersed catalysts of core-shell structured Au@SiO2 for formaldehyde catalytic oxidation[J]. Chemical Engineering Journal, 2020, 385:123887.
    [21] LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Materials, 2011, 10(12):911-921.
    [22] LOW J, YU J G, LI Q, et al. Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi2WO6 nanosheets[J]. Physical Chemistry Chemical Physics, 2014, 16(3):1111-1120.
    [23] CUSHING S K, CHEN C J, DONG C L, et al. Tunable nonthermal distribution of hot electrons in a semiconductor injected from a plasmonic gold nanostructure[J]. ACS Nano, 2018, 12(7):7117-7126.
    [24] JIANG Z Y, ZHANG X H, YUAN Z M, et al. Enhanced photocatalytic CO2 reduction via the synergistic effect between Ag and activated carbon in TiO2/AC-Ag ternary composite[J]. Chemical Engineering Journal, 2018, 348:592-598.
    [25] LI H Y, WANG D J, WANG P, et al. Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse bi-doped TiO2 nanospheres[J]. Chemistry, 2009, 15(45):12521-12527.
    [26] SOOD S, MEHTA S K, SINHA A S K, et al. Bi2O3/TiO2 heterostructures:synthesis, characterization and their application in solar light mediated photocatalyzed degradation of an antibiotic, ofloxacin[J]. Chemical Engineering Journal, 2016, 290:45-52.
    [27] LAI M, ZHAO J, CHEN Q C, et al. Photocatalytic toluene degradation over Bi-decorated TiO2:promoted O2 supply to catalyst's surface by metallic Bi[J]. Catalysis Today, 2019, 335:372-380.
    [28] LI X, LI H, HUANG Y, et al. Exploring the photocatalytic conversion mechanism of gaseous formaldehyde degradation on TiO2-x-OV surface[J]. Journal of Hazardous Materials, 2022, 424(Pt A):127217.
    [29] WANG N, LI X, YANG Y L, et al. Enhanced photocatalytic degradation of sulfamethazine by Bi-doped TiO2 nano-composites supported by powdered activated carbon under visible light irradiation[J]. Separation and Purification Technology, 2019, 211:673-683.
    [30] 李雪, 刘婷婷, 陶喜洋, 等. O-C3N4/Ag2O p-n异质结光催化剂增强可见光降解有机物[J]. 西安工程大学学报, 2021, 35(3):1-8.
    [31] 许洋, 蒲生彦, 季雯雯, 等. Ag/Ag2O/g-C3N4/BiVO4复合光催化体系降解盐酸四环素机理研究[J]. 环境科学研究, 2021, 34(12):2841-2849.
    [32] KUBACKA A, MUÑOZ-BATISTA M J, FERRER M, et al. UV and visible light optimization of anatase TiO2 antimicrobial properties:surface deposition of metal and oxide (Cu, Zn, Ag) species[J]. Applied Catalysis B:Environmental, 2013, 140/141:680-690.
    [33] ŠILJEGOVIĆ M, KAČAREVIĆ-POPOVIĆ Z M, KRKLJEŠ A N, et al. Effect of N4+ and C4+ ion beam bombardment on the optical and structural characteristics of ethylene-norbornene copolymer (TOPAS)[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2011, 269(7):708-715.
    [34] 王星, 牟科全, 袁方, 等. Ag/Ag2O的合成及可见光催化性能研究[J]. 应用化工, 2021, 50(11):3036-3039

    ,3043.
    [35] 龚洁, 赵凤怡, 邹曦, 等. g-C3N4/Ag2O复合光催化剂的制备及其近红外光催化性能[J]. 武汉科技大学学报, 2021, 44(2):100-106.
    [36] LIU Y B, ZHU G Q, GAO J Z, et al. Enhanced photocatalytic activity of Bi4Ti3O12 nanosheets by Fe3+-doping and the addition of Au nanoparticles:photodegradation of Phenol and bisphenol A[J]. Applied Catalysis B:Environmental, 2017, 200:72-82.
    [37] SENTHIL R A, THEERTHAGIRI J, SELVI A, et al. Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation[J]. Optical Materials, 2017, 64:533-539.
    [38] HUANG Q, YE J, SI H, et al. Differences of characteristics and performance with Bi3+ and Bi2O3 doping over TiO2 for photocatalytic oxidation under visible light[J]. Catalysis Letters, 2019, 150(4):1098-1110.
    [39] 杜立杰. 基于三元复合材料g-C3N4/TiO2/BiVO4的制备及甲醛降解规律研究[D]. 保定:河北大学, 2021.
    [40] AN G, ZHU J, HUANG Q, et al. Synergistic effect of photo-thermal oxidation for a low concentration of HCHO over Bi3+-TiO2/MnFeO<em>x catalysts at ambient temperature[J]. Environmental Science and Pollution Research, 2022.
    [41] HUANG Q, WANG Q, TAO T, et al. Controlled synthesis of Bi2O3/TiO2 catalysts with mixed alcohols for the photocatalytic oxidation of HCHO[J]. Environment Technology, 2019, 40(15):1937-1947.
    [42] MIARALIPOUR S, FRIEDMANN D, SCOTT J, et al. TiO2/porous adsorbents:recent advances and novel applications[J]. Journal of Hazardous Materials, 2018, 341:404-423.
    [43] KUO C Y, WU C H, WU J T, et al. Synthesis and characterization of a phosphorus-doped TiO2 immobilized bed for the photodegradation of bisphenol A under UV and sunlight irradiation[J]. Reaction Kinetics, Mechanisms and Catalysis, 2014, 114(2):753-766.
    [44] XU Z H, YU J G, JARONIEC M. Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt[J]. Applied Catalysis B:Environmental, 2015, 163:306-312.
    [45] YAN Z X, XU Z H, YU J G, et al. Highly active mesoporous ferrihydrite supported Pt catalyst for formaldehyde removal at room temperature[J]. Environmental Science & Technology, 2015, 49(11):6637-6644.
    [46] QI L F, CHENG B, YU J G, et al. High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature[J]. Journal of Hazardous Materials, 2016, 301:522-530.
  • 加载中
计量
  • 文章访问数:  67
  • HTML全文浏览量:  13
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 网络出版日期:  2023-05-25
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回