中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻量化网络LW-GCNet在垃圾分类中的应用

夏景明 徐子峰 谈玲

夏景明, 徐子峰, 谈玲. 轻量化网络LW-GCNet在垃圾分类中的应用[J]. 环境工程, 2023, 41(2): 173-180. doi: 10.13205/j.hjgc.202302023
引用本文: 夏景明, 徐子峰, 谈玲. 轻量化网络LW-GCNet在垃圾分类中的应用[J]. 环境工程, 2023, 41(2): 173-180. doi: 10.13205/j.hjgc.202302023
XIA Jingming, XU Zifeng, TAN Lin. APPLICATION RESEARCH OF LIGHTWEIGHT NETWORK LW-GCNet IN GARBAGE CLASSIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 173-180. doi: 10.13205/j.hjgc.202302023
Citation: XIA Jingming, XU Zifeng, TAN Lin. APPLICATION RESEARCH OF LIGHTWEIGHT NETWORK LW-GCNet IN GARBAGE CLASSIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 173-180. doi: 10.13205/j.hjgc.202302023

轻量化网络LW-GCNet在垃圾分类中的应用

doi: 10.13205/j.hjgc.202302023
基金项目: 

国家自然科学基金项目(61871032)

国家重点研发计划(2021YFB2700910)

江苏省高等学校基金项目(20KJB510036)

详细信息
    作者简介:

    夏景明(1980-),男,副教授,主要研究方向为图像分类和目标检测。xiajingming@nuist.edu.cn

    通讯作者:

    谈玲(1979-),女,教授,主要研究方向为大数据和深度学习。001071@nuist.edu.cn

APPLICATION RESEARCH OF LIGHTWEIGHT NETWORK LW-GCNet IN GARBAGE CLASSIFICATION

  • 摘要: 垃圾分类是构建绿色城市的重要途径。传统的垃圾分类是由人工进行,分类不彻底,工作强度大,不利于环境保护与资源再利用。为提高垃圾分类的准确性,提出了一种基于VGG16网络的轻量化网络模型LW-GCNet (light weight garbage classify network)。该网络模型通过引入深度可分离卷积和SE(squeeze-and-excitation)模块来进行特征提取,并将垃圾图像的浅层和深层特征有机融合,在减少计算量的同时,增强了待分类垃圾图像通道之间的依赖关系,为分类提供多层次的语义信息。此外,LW-GCNet模型采用自适应最大池化和全局平均池化取代VGG16网络中的全连接层,有效降低了参数量。利用由4类垃圾图像构成的数据集GRAB125对LW-GCNet性能进行验证。实验结果表明:该方法在保证识别速度的前提下,识别平均准确率达到77.17%,参数量为3.15M,易于在户外的嵌入式系统中进行部署。
  • [1] 孙晓杰, 王春莲, 李倩, 等. 中国生活垃圾分类政策制度的发展演变历程[J]. 环境工程, 2020, 38(8):65-70.
    [2] 任中山, 陈瑛, 王永明. 生活垃圾分类对垃圾焚烧发电产业发展影响的分析[J]. 环境工程, 2021, 39(6):150-153.
    [3] 王肇嘉, 秦玉, 顾军, 等. 生活垃圾焚烧飞灰二噁英控制技术研究进展[J]. 环境工程, 2021,39(10):116-123.
    [4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25:1097-1105.
    [5] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014.
    [6] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//The thirty-first AAAI conference on artificial intelligence. 2017.
    [7] TAN M X, LE Q V. Efficientnet:rethinking model scaling for convolutional neural networks[C]//the International Conference on Machine Learning. PMLR, 2019:6105-6114.
    [8] YANG M, THUNG G. Classification of trash for recyclability status[R]. CS229 Project Report, 2016, 2016:3.
    [9] ARAL R A, KESKIN R, KAYA M, et al. Classification of trashnet dataset based on deep learning models[C]//2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018:2058-2062.
    [10] RABANO S L, CABATUAN M K, SYBINGCO E, et al. Common garbage classification using mobilenet[C]//2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). IEEE, 2018:1-4.
    [11] KENNEDY T. OscarNet:Using transfer learning to classify disposable waste[R]. CS230 Report:Deep Learning. Stanford University, CA, Winter, 2018.
    [12] OZKAYA U, SEYFI L. Fine-tuning models comparisons on garbage classification for recyclability[J]. arXiv:1908.04393, 2019.
    [13] KANG Z, YANG J, LI G, et al. An automatic garbage classification system based on deep learning[J]. IEEE Access, 2020, 8:140019-140029.
    [14] SHI C P, XIA R Y, WANG L G. A novel multi-branch channel expansion network for garbage image classification[J]. IEEE Access, 2020, 8:154436-154452.
    [15] ZENG M, LU X Z, XU W K, et al. PublicGarbageNet:a deep learning framework for public garbage classification[C]//2020 39th Chinese Control Conference (CCC). IEEE, 2020:7200-7205.
    [16] LI Y F, LIU W. Deep learning-based garbage image recognition algorithm[J]. Applied Nanoscience, 2021:1-10.
    [17] MITTAL G, YAGNIK K B, GARG M, et al. Spotgarbage:smartphone app to detect garbage using deep learning[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016:940-945.
    [18] PROENÇA P F, SIMÕES P. TACO:Trash annotations in context for litter detection[J]. arXiv:2003.06975, 2020.
    [19] PANWAR H, GUPTA P K, SIDDIQUI M K, et al. AquaVision:automating the detection of waste in water bodies using deep transfer learning[J]. Case Studies in Chemical and Environmental Engineering, 2020, 2:100026.
    [20] GUO J B, LI Y X, LIN W Y, et al. Network decoupling:from regular to depthwise separable convolutions[J]. arXiv:1808.05517, 2018.
    [21] CHOLLET F. Xception:Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:1251-1258.
    [22] ZHAO Q T, SHENG T, WANG Y T, et al. M2det:A single-shot object detector based on multi-level feature pyramid network[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1):9259-9266.
    [23] HAASE D, AMTHOR M. Rethinking depthwise separable convolutions:How intra-kernel correlations lead to improved mobilenets[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:14600-14609.
    [24] GUO Y H, LI Y D, WANG L Q, et al. Depthwise convolution is all you need for learning multiple visual domains[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1):8368-8375.
    [25] HUA B S, TRAN M K, YEUNG S K. Pointwise convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:984-993.
    [26] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7132-7141.
    [27] KAR A, RAI N, SIKKA K, et al. Adascan:adaptive scan pooling in deep convolutional neural networks for human action recognition in videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:3376-3385.
    [28] LIN M, CHEN Q, YAN S. Network in network[J]. arXiv:1312.4400, 2013.
  • 加载中
计量
  • 文章访问数:  153
  • HTML全文浏览量:  21
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-02
  • 网络出版日期:  2023-05-25
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回