CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于逆方差多模型融合的空气质量指数预测方法

孙朝云 杜耀辉 裴莉莉 刘英 吴玉龙

孙朝云, 杜耀辉, 裴莉莉, 刘英, 吴玉龙. 基于逆方差多模型融合的空气质量指数预测方法[J]. 环境工程, 2023, 41(2): 197-204. doi: 10.13205/j.hjgc.202302026
引用本文: 孙朝云, 杜耀辉, 裴莉莉, 刘英, 吴玉龙. 基于逆方差多模型融合的空气质量指数预测方法[J]. 环境工程, 2023, 41(2): 197-204. doi: 10.13205/j.hjgc.202302026
SUN Zhaoyun, DU Yaohui, PEI Lili, LIU Ying, WU Yulong. AN AIR QUALITY INDEX PREDICTION METHOD BASED ON INVERSE VARIANCE MULTI-MODEL FUSION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 197-204. doi: 10.13205/j.hjgc.202302026
Citation: SUN Zhaoyun, DU Yaohui, PEI Lili, LIU Ying, WU Yulong. AN AIR QUALITY INDEX PREDICTION METHOD BASED ON INVERSE VARIANCE MULTI-MODEL FUSION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 197-204. doi: 10.13205/j.hjgc.202302026

基于逆方差多模型融合的空气质量指数预测方法

doi: 10.13205/j.hjgc.202302026
基金项目: 

陕西省重点研发计划"基于大数据和云计算路面智慧养护决策系统研发"(2022JBGS3-08)

国家重点研发计划"高速公路基础设施绿色能源自洽供给与高效利用系统关键技术研究"(2021YFB1600205)

详细信息
    作者简介:

    孙朝云(1962-),女,教授,主要研究方向为人工智能与大数据分析。zhaoyunsun@126.com

    通讯作者:

    裴莉莉(1995-),女,博士,主要研究方向为人工智能与大数据分析。peilili@chd.edu.cn

AN AIR QUALITY INDEX PREDICTION METHOD BASED ON INVERSE VARIANCE MULTI-MODEL FUSION

  • 摘要: 空气质量预测对合理制定环境治理政策具有重要意义。针对目前单体预测模型存在模型不稳定和泛化能力不强的问题,提出基于逆方差权重分配方法融合3种单体模型的空气质量指数(air quality index,AQI)预测方法。首先,以北京市为例,构建空气质量指数预测数据集;其次,分别构建长短期记忆网络(LSTM)、门控循环单元(GRU)、双向长短期记忆网络(Bi-LSTM)、自回归积分滑动平均模型(ARIMA)和多元线性回归(MLR)5种模型对数据集进行预测,并对比以上模型的预测结果; 最后,在多模型融合方法中,选择逆方差法计算预测精度较高的3种单体模型的权重,根据算得权重构建逆方差融合预测模型。与预测精度较高的3种单体模型以及加权平均融合预测模型相比,逆方差融合预测模型对空气质量指数的预测精度R2分别提高3.9%、3.4%、1.6%和0.5%,达到0.933。结果表明:逆方差融合预测模型综合了各单体预测模型的优点,能够提高AQI预测精度。
  • [1] LIU H, YIN S, CHEN C, et al. Data multi-scale decomposition strategies for air pollution forecasting:a comprehensive review[J]. Journal of Cleaner Production, 2020, 277:124023.
    [2] DINCER N G, AKKU Z. A new fuzzy time series model based on robust clustering for forecasting of air pollution[J]. Ecological Informatics, 2018, 43:157-164.
    [3] MIRI M, ALAHABADI A, EHRAMPUSH M H, et al. Mortality and morbidity due to exposure to ambient particulate matter[J]. Ecotoxicology and Environmental Safety, 2018, 165:307-313.
    [4] 赵文成, 王访. 基于多尺度交叉趋势样本熵的城市空气质量指数分析[J]. 环境工程, 2020, 38(2):91-98.
    [5] LIU H, YAN G X, DUAN Z, et al. Intelligent modeling strategies for forecasting air quality time series:a review[J]. Applied Soft Computing, 2021, 102:106957.
    [6] QIAO X, YING Q, LI X, et al. Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented Community Multiscale Air Quality model[J]. Science of the Total Environment, 2017, 612:462-471.
    [7] JEONG J I, PARK R, WOO J H, et al. Source contributions to carbonaceous aerosol concentrations in Korea[J]. Atmospheric Environment, 2011, 45(5):1116-1125.
    [8] LI C, HSU N C, TSAY S C. A study on the potential applications of satellite data in air quality monitoring and forecasting[J]. Atmospheric Environment, 2011, 45(22):3663-3675.
    [9] 史凯赫, 丁日佳, 吴利丰, 等.预测空气质量的新型灰色系统多变量模型构建:以石家庄市为例[J]. 系统科学学报, 2023(2):75-81.
    [10] ZHANG L Y, LIN J N, QIU R Z, et al. Trend analysis and forecast of PM2.5 in Fuzhou, China using the ARIMA model[J]. Ecological Indicators, 2018, 95:702-710.
    [11] LIU B C, ARIHANT B, CHANG P C, et al. Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR):a case study of Beijing-Tianjin-Shijiazhuang[J]. PLoS One, 2017, 12(7):0179763.
    [12] 徐乔王, 胡红萍, 白艳萍, 等. 基于MEA_SVM空气质量指数预测[J]. 重庆理工大学学报(自然科学版), 2019, 33(12):150-155.
    [13] LI X, PENG L, YAO X J, et al. Long short-term memory neural network for air pollutant concentration predictions:method development and evaluation[J]. Environmental Pollution, 2017, 231:997-1004.
    [14] SHARMA E, DEO R C, PRASAD R, et al. A hybrid air quality early-warning framework:an hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms[J]. Science of the Total Environment, 2020, 709:135934.
    [15] YAN R, LIAO J Q, YANG J, et al. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering[J]. Expert Systems with Applications, 2020, 169(4):114513.
    [16] LIU B, YU X, CHEN J, et al. Air pollution concentration forecasting based on wavelet transform and combined weighting forecasting model[J]. Atmospheric Pollution Research, 2021, 12(8):101144.
    [17] GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al. LSTM:a search space odyssey[J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 28(10):2222-2232.
    [18] ZHANG B, ZHANG H, ZHAO G, et al. Constructing a PM2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks[J]. Environmental Modelling and Software, 2019, 124:104600.
    [19] HUANG G Y, LI X Y, ZHANG B, et al. PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition[J]. Science of the Total Environment, 2021, 768(3):144516.
    [20] ALABDULRAZZAQ H, ALENEZI M, RAWAJFIH Y, et al. On the accuracy of ARIMA based prediction of COVID-19 spread[J]. Results in Physics, 27:104509.
    [21] 杜展鹏, 王明净, 严长安, 等. 基于绝对主成分-多元线性回归的滇池污染源解析[J]. 环境科学学报, 2020, 40(3):1130-1137.
    [22] 谭小钰, 刘芳, 马俊杰, 等. 基于DBN与T-S时变权重组合的光伏功率超短期预测模型[J]. 太阳能学报, 2021, 42(10):42-48.
    [23] 裴莉莉, 孙朝云, 户媛姣, 等. 基于多特征因子的路用集料粒径计算神经网络模型[J]. 华南理工大学学报(自然科学版), 2020, 48(6):77-86.
  • 加载中
计量
  • 文章访问数:  140
  • HTML全文浏览量:  20
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 网络出版日期:  2023-05-25
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回