ENHANCEMENT OF SO42- REMOVAL BY SODIUM ALGINATE IN LIME SOFTENING PROCESS OF DESULFURIZATION WASTEWATER
-
摘要: 以实际脱硫废水为原水,在不同石灰乳、聚合硫酸铁、海藻酸钠的复配条件下,对混凝沉淀后溶液SO42-浓度、pH值、Zeta电位及矾花粒径、表面形貌、官能团和晶体结构等进行分析,探索石灰软化法中海藻酸钠强化SO42-去除机理。结果表明:相比于同时投加7 g/L石灰和40 mg/L聚合硫酸铁,复配海藻酸钠可使出水SO42-浓度由3991.15 mg/L降低至3238.60 mg/L(均值),pH值(均值)由9.66升高至9.69。海藻酸钠通过吸附电中和及吸附架桥作用促进胶粒的聚集,在投加量为3 mg/L时形成中值粒径30.41 μm的矾花。投加海藻酸钠形成的CaSO4晶体更加规整,晶簇较为细小但极为密集,强化了SO42-去除。红外光谱和X射线衍射分析表明,海藻酸钠的羧基(-COO-)可能通过螯合Ca2+等金属离子促进石灰溶解,从而使CaSO4结晶效果更好。正交实验结果显示,去除SO42-较适宜的复配组合为石灰7 g/L+聚合硫酸铁30 mg/L+海藻酸钠2 mg/L,SO42-去除率可达到80.94%。Abstract: The mechanism of SO42- removal enhanced by sodium alginate in the lime softening method was explored in this study, by treating the actual desulfurization wastewater with different combinations of lime milk, polymeric ferric sulfate and sodium alginate, through analyzing the SO42- concentration, pH value, Zeta potential, particle size, surface morphology, functional groups and crystal structure after coagulation. The results showed that compared with the dosing of 7 g/L lime and 40 mg/L polymerized iron sulfate at the same time, compounding with sodium alginate could make the SO42- concentration in the effluent decrease from 3991.15 mg/L to 3238.60 mg/L (mean value), and the pH value increase from 9.66 to 9.69 (mean value). Sodium alginate promoted the aggregation of the colloids through the adsorption charge neutralization and adsorption bridging mechanisms, and formed flocs with a median particle size of 30.41 μm at a dosage of 3 mg/L. By adding sodium alginate into the system, the formed CaSO4 crystals were more regular, and the crystal clusters were relatively smaller but quite dense, thus enhancing the removal of SO42-. The infrared spectroscopy and X-ray diffraction analysis indicated that, the carboxyl group (—COO-) of the sodium alginate might facilitate the dissolution of lime by chelating the metal ions such as Ca2+, and the crystallization of CaSO4 was better. The orthogonal experiment results showed that the suitable compound for SO42- removal was composed of 7 g/L of lime, 30 mg/L of polymeric ferric sulfate and 2 mg/L of sodium alginate, and then the removal efficiency was 80.94%.
-
Key words:
- sodium alginate /
- desulfurization wastewater /
- sulfate ion /
- SEM /
- FTIR
-
[1] 叶春松, 黄建伟, 刘通,等. 燃煤电厂烟气脱硫废水处理方法与技术进展[J]. 环境工程, 2017, 35(11):10-13,51. [2] ZHENG L B, JIAO Y Y, ZHONG H, et al. Insight into the magnetic lime coagulation-membrane distillation process for desulfurization wastewater treatment:from pollutant removal feature to membrane fouling[J]. Journal of Hazardous Materials, 2020, 391:122202. [3] LI B, YUN Y B, LIU G C, LI C L, et al. Direct contact membrane distillation with softening Pre-treatment for effective reclaiming flue gas desulfurization wastewater[J]. Separation and Purification Technology, 2021, 277:119637. [4] 郭远建. 火力发电厂脱硫废水处理方式的改进与探讨[J]. 环境工程, 2020, 38(9):109-110. [5] 张建华, 池毓菲, 邹宜金,等. 燃煤电厂脱硫废水处理技术工程应用现状与展望[J]. 工业水处理, 2020, 40(10):14-19. [6] 姚温浩, 于飞, 马杰. 海藻酸盐复合凝胶吸附材料的合成及其在水处理中的应用[J]. 化学进展, 2018, 30(11):1722-1733. [7] 杨晓武, 李志刚, 李培枝,等. 海藻酸钠凝胶海绵体的制备及其对Pb2+和Cu2+的吸附[J]. 精细化工, 2021, 38(1):162-168. [8] WU C H, WANG Y, GAO B Y, et al. Coagulation performance and floc characteristics of aluminum sulfate using sodium alginate as coagulant aid for synthetic dying wastewater treatment[J]. Separation and Purification Technology, 2012, 95:180-187. [9] 黄立新, 王占全, 尹寿伟,等. 海藻酸钠用于红糖溶液脱钙的试验研究[J]. 华南理工大学学报(自然科学版), 2021, 49(3):106-113. [10] 国家环境保护总局.水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版集团, 2002. [11] 张哲, 王磊, 贺苗露,等. UIO-66改性聚酰胺正渗透复合膜的制备及性能研究[J]. 中国环境科学, 2020, 40(6):2418-2425. [12] MOHAMMADI R, AZADMEHR A, MAGHSOUDI A. Fabrication of the alginate combusted coal gangue composite for simultaneous and effective adsorption of Zn(Ⅱ) and Mn(Ⅱ)[J]. Journal of Environmental Chemical Engineering, 2019, 7:103494. [13] LIU Y M, MA J, LIAN L L, et al. Flocculation performance of alginate grafted polysilicate aluminium calcium in drinking water treatment[J]. Process Safety and Environmental Protection, 2021, 155:287-294. [14] ZHU G C, ZHENG H L, ZHANG Z, et al. Characterization and coagulation-flocculation behavior of polymeric aluminium ferric sulfate (PAFS)[J]. Chemical Engineering Journal, 2011, 178:50-59. [15] LI S P, KANG Y. Effect of PO43- on the polymerization of polyferric phosphatic sulfate and its flocculation characteristics for different simulated dye wastewater[J]. Separation and Purification Technology, 2021, 276:119373. [16] ZHAO Y X, GAO B Y, WANG Y, et al. Coagulation performance and floc characteristics with polyaluminum chloride using sodium alginate as coagulant aid:A preliminary assessment[J]. Chemical Engineering Journal, 2012, 183:387-394. [17] LIU C Y, GAO B Y, WANG S E, et al. Synthesis, characterization and flocculation performance of a novel sodium alginate-based flocculant[J]. Carbohydrate Polymers, 2020, 248:116790. [18] FERGUSON R I, CHURCH M. A simple universal equation for grain settling velocity[J]. Journal of Sedimentary Research, 2004, 74(6):933-937. [19] 赖莉. 复配混凝剂(PAC-PDMDAAC)处理嘉陵江水源水试验研究[D].重庆:重庆大学, 2010. [20] YANG Z, YUAN B, HUANG X, et al. Evaluation of the flocculation performance of carboxymethyl chitosan-graft-polyacrylamide, a novel amphoteric chemically bonded composite flocculant[J]. Water Research, 2012, 46:107-114. [21] LAROSA C, SALERNO M, de LIMA J S, et al. Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses[J]. International Journal of Biological Macromolecules, 2018, 115:900-906. [22] SAKUGAWA K, IKEDA A, TAKEMURA A, et al. Simplified method for estimation of composition of alginates by FTIR[J]. Journal of Applied Polymer Science, 2004, 93:1372-1377. 期刊类型引用(14)
1. 江雨燕,黄体臣,甘如美江,王付宇. 融合二次分解的深度学习模型在PM_(2.5)浓度预测中的应用. 安全与环境学报. 2025(01): 296-309 . 百度学术
2. 杨帆,毛腾跃,占伟. 基于PCA-Informer~+模型的周期性甲烷菌体浓度预测研究. 中南民族大学学报(自然科学版). 2025(03): 393-399 . 百度学术
3. 赵涛,叶世榕,罗歆琪,夏朋飞. GNSS-IR潮位反演中高仰角数据质量控制方法. 武汉大学学报(信息科学版). 2024(01): 68-76 . 百度学术
4. 张雅波,陈春晖. 融合情绪分析和Informer-ARIMA模型的比特币价格预测方法. 现代信息科技. 2024(09): 131-135 . 百度学术
5. 陆钊,龙法宁,陈国年. 基于时间序列的发电机设备异常分析. 现代信息科技. 2024(12): 121-124 . 百度学术
6. 王鲁君,孙永华,刘洪涛,于秋红,郝浚杰. 基于多尺度特征Informer模型的受热面积灰预测研究. 山东电力高等专科学校学报. 2024(03): 35-40 . 百度学术
7. 马愈昭,张宇航,王凌飞. TimeGAN-Informer长时机场能见度预测. 安全与环境学报. 2024(07): 2517-2527 . 百度学术
8. 何志铧,熊祖强. 基于Informer神经网络的工作面矿压预测研究. 矿业研究与开发. 2024(07): 142-148 . 百度学术
9. 刘妙男,王魏,胡显辉,许德昊. 基于因果卷积和Informer模型的城市公交客流预测. 控制工程. 2024(08): 1445-1454 . 百度学术
10. 安昱宁,朱四富,刘静,杜立伟,刘长青. 基于深度学习的污水处理厂出水总磷预测方法. 工业水处理. 2024(10): 143-150 . 百度学术
11. 何宇涵. 基于自注意力机制的PM_(2.5)长时间尺度预测. 长江信息通信. 2024(10): 72-75 . 百度学术
12. 王伟,王海云,黄晓芳. 基于Informer的风电机组叶根载荷预测. 水力发电. 2023(09): 85-89 . 百度学术
13. 董子敬,李凡,孙宏,朱梦媛,范博艺. 基于Informer模型的进近阶段工作负荷管理胜任力评估. 飞行力学. 2023(05): 81-87 . 百度学术
14. 蒲维,杨毅强,张渊博,付江涛,宋弘. 基于NGO-VMD-FCBF-Informer的电力负荷组合预测模型. 智能计算机与应用. 2023(11): 135-141 . 百度学术
其他类型引用(17)
-

计量
- 文章访问数: 195
- HTML全文浏览量: 40
- PDF下载量: 3
- 被引次数: 31