BACTERIAL COMMUNITY STRUCTURE AND DIVERSITY OF TYPICAL BIORETENTION SYSTEMS
-
摘要: 为了解生物滞留池的细菌群落多样性特征,选取珠海市3个典型生物滞留池为样点,采集19个土壤样本,基于16S rRNA基因高通量测序技术,分析了生物滞留池的细菌群落结构及多样性,探讨了细菌群落与土壤因子的关系及生态功能。结果表明:珠海市生物滞留池的优势菌门(相对丰度>5%)为变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria),还含有大量厚壁菌门(Firmicutes)、芽单胞菌门(Gemmatimonadetes)、硝化螺旋菌门(Nitrospirae)、拟杆菌门(Bacteroidetes)、糖化细菌门(Saccharibacteria)、蓝菌门(Cyanobacteria)、浮霉菌门(Planctomycetes)等细菌群落。生物滞留池细菌群落的多样性和丰富度较高,细菌群落结构受生物滞留池中植被类型的影响显著,受土壤深度的影响不显著。土壤因子分析发现,总有机碳(TOC)、总硫(TS)、总氮(TN)、铵氮(NH4+-N)和硝酸盐氮(NO3--N)对细菌群落的影响较强,pH值、亚硝酸盐氮(NO2--N)的影响较弱;变形菌门的丰度与NH4+-N、NO3--N含量呈显著中等负相关,绿弯菌门与TOC、TN呈显著中等负相关,硝化螺旋菌门与pH值呈显著中等正相关,与NO2--N呈极显著强正相关,拟杆菌门与NO3--N呈显著中等负相关,浮霉菌门与NH4+-N呈显著中等负相关。生态功能预测结果显示,生物滞留池的细菌群落具备较为完善的基础生态功能,包括氨基酸转运与代谢、能量生产与转化、信号传导机制、无机离子转运与代谢、细胞壁/膜/包膜的生成、转录、碳水化合物的运输和代谢等。Abstract: Bioretention system is a green infrastructure which takes advantage of the physical, chemical and biological characteristics of microorganisms and vegetation to regulate the quality and quantity of surface runoff. The bacterial community has a profound influence on the ecological functions of bioretention systems. At present, there are few studies focusing on the structure and diversity of the bacterial community in typical bioretention systems. Nineteen soil samples were collected from three typical bioretention systems in Zhuhai, the structure and diversity of the bacteria community were investigated based on 16S rRNA gene high-throughput sequencing technology, and the relationship between bacterial community and soil environmental factors was discussed, also the predicted ecological functions. The dominant phyla (relative abundance>5%) in three typical bioretention systems were Proteobacteria, Chloroflex, Actinomycetes and Acidobacteria, while the community also contained abundant Firmicutes, Gemmatimonadetes, Nitrospirae, Bacteroidete, Saccharibacteria, Cyanobacteria and Planctomycetes. The diversity and abundance of the bacterial community were relatively high, and the structure of the bacterial community was mainly affected by the vegetation type rather than soil depth. Results indicated that the effects of total organic carbon (TOC), total sulfur (TS), total nitrogen (TN), ammonium-nitrogen (NH4+-N) and nitrate-nitrogen (NO3--N) on bacterial community were strong, while those of pH and nitrite-nitrogen (NO2--N) were weak. The relative abundance of Proteobacteria was negatively correlated with NH4+-N and NO3--N contents, Cloroflexi negatively correlated with TOC and TN, Nitrospirae positively correlated with pH and NO2--N, Bacteroides negatively correlated with NO3--N, and Plantomycetes negatively correlated with NH4+-N. The bacterial community had a relatively complete set of basic ecological functions, including amino acid transport and metabolism, energy production and conversion, signal transduction mechanisms, inorganic ion transport and metabolism, cell wall/membrane/envelope biogenesis, transcription, carbohydrate transport and metabolism, etc.
-
[1] HATT B E, FLETCHER T D, DELETIC A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale[J]. Journal of Hydrology, 2009, 365(3/4):310-321. [2] ROY-POIRIER A, CHAMPAGNE P, FILION Y. Review of bioretention system research and design:past, present, and future[J]. Journal of Environmental Engineering,2010,136(9):878-889. [3] 李家科,刘增超,黄宁俊,等.低影响开发(LID)生物滞留技术研究进展[J].干旱区研究,2014,31(3):431-439. [4] COUSTUMER S L, FLETCHER T D, DELETIC A, et al. Hydraulic performance of biofilter systems for stormwater management:Influences of design and operation[J]. Journal of Hydrologic Engineering,2009,14(4):407-415. [5] JIANG C B, LI J K, LI H E, et al. An improved approach to design bioretention system media[J]. Ecological Engineering,2019,136:125-133. [6] 许萍,何俊超,张建强,等.生物滞留强化脱氮除磷技术研究进展[J].环境工程,2015,33(11):21-25,30. [7] ZUO X J, GUO Z Y, WU X, et al. Diversity and metabolism effects of microorganisms in bioretention systems with sand, soil and fly ash[J]. The Science of the Total Environment,2019,676:447-554. [8] 单稼琪.多环芳烃对生物滞留系统的影响及微生物的生态效应研究[D].西安:西安理工大学,2017. [9] HONG J G, FRANZ K G, HYESEON C, et al. Impacts of nonpoint source pollutants on microbial community in rain gardens[J]. Chemosphere,2018,209:20-27. [10] 李笑玥,秦华鹏,王凡,等.生物滞留池微生物种群的硝化反硝化功能研究:以深圳市为例[J].深圳大学学报(理工版),2021,38(1):36-44. [11] 张宏胜.植物对雨水生物滞留池中氮磷去除及微生物多样性的影响[D].南京:南京信息工程大学,2019. [12] CHEN X L, PELTIER E, STURM B S M, et al. Nitrogen removal and nitrifying and denitrifying bacteria quantification in a stormwater bioretention system[J]. Water Research,2013,47(4):1691-1700. [13] DAGENAIS D, BRISSON J, FLETCHER T D, et al. The role of plants in bioretention systems; does the science underpin current guidance?[J]. Ecological Engineering,2018,120:532-545. [14] 陈垚,程启洪,郑爽,等.干湿交替对生物滞留系统中氮素功能微生物群落的影响[J].微生物学报,2020,60(3):533-544. [15] 曹宇.珠海市因地制宜探索可复制海绵城市建设模式[J].城乡建设,2019(22):36-40. [16] 宋兆齐,王莉,刘秀花,等.云南4处酸性热泉中的变形菌门细菌多样性[J].河南农业大学学报,2016,50(3):376-382. [17] 付思远,席雨晴,赵鹏菲,等.泓森槐可培养内生固氮细菌多样性与潜在促生长特性评价[J].微生物学通报, 2020,47(8):2458-2470. [18] 冯颖杰,袁岐山,杨宗灿,等.一株鞘氨醇单胞菌对复烤后烟叶多酚物质的降解作用[J].中国烟草学报,2019,25(1):19-24. [19] 周明明,任梦楠,李晓雁,等.三赞鞘氨醇单胞菌生物结皮对土壤水肥保持的影响[J].北方园艺,2016(20):171-174. [20] 钱一帆,郑广宏,康铸慧,等.不产氧光合细菌Rhodobacter sphaeroides产氢影响因子研究[J].工业微生物,2007(5):6-12. [21] 梁沪莲,郭小雅,刘洋,等.基于高通量测序的4种硝化细菌富集培养物微生物群落结构分析[J].微生物学通报,2017,44(9):2112-2119. [22] 周恩民.美国大盆地四热泉可培养高温细菌多样性及生态学研究[D].昆明:云南大学,2015. [23] 赵立君,刘云根,王妍,等.典型高原湖滨带底泥细菌群落结构及多样性特征[J].微生物学通报,2020,47(2):401-410. [24] 郭康丽,龙超,党二莎,等.珠海市近岸海域水质状况与富营养化评价[J].海洋环境科学,2022,41(2):222-229. [25] MATSUURA N, TOURLOUSSE D M, OHASHI A, et al. Draft genome sequences of anaerolinea thermolimosa IMO-1, Bellilinea caldifistulae GOMI-1, Leptolinea tardivitalis YMTK-2, Levilinea saccharolytica KIBI-1, Longilinea arvoryzae KOME-1, Previously Described as Members of the Class Anaerolineae (Chloroflexi)[J]. Genome Announcements,2015,3(5):e00975. [26] GROUZDEV D S, RYSINA M S, BRYANTSEVA I A, et al. Draft genome sequences of 'Candidatus Chloroploca asiatica' and 'Candidatus Viridilinea mediisalina', candidate representatives of the Chloroflexales order:phylogenetic and taxonomic implications[J]. Standards in Genomic Sciences,2018,24. [27] 李文均,徐平,徐丽华,等.极端环境中的放线菌资源[J].微生物学通报,2003,30(4):125-127. [28] MIZUNO C M, RODRIGUEZ-VALERA F, GHAI R. Genomes of planktonic Acidimicrobiales:widening horizons for marine Actinobacteria by metagenomics[J]. mBio,2015,6(1). [29] 周明辉,荚荣. Plackett-Burman Design与均匀设计法优化玫瑰色微球菌固定化脱氮的性能[J].微生物学通报,2015,42(9):1671-1678. [30] SEVERINO R, FROUFE H J, BARROSO C, et al. High-quality draft genome sequence of Gaiella occulta isolated from a 150 meter deep mineral water borehole and comparison with the genome sequences of other deep-branching lineages of the phylum Actinobacteria[J]. MicrobiologyOpen,2019,8(9):00840. [31] HAUSMANN B, PELIKAN C, HERBOLD C W, et al. Peatland Acidobacteria with a dissimilatory sulfur metabolism[J]. The ISME Journal,2018:1729-1742. [32] 史登峰.低温条件下复合填料协同强化A/O-BAF脱氮除磷试验研究[D].兰州:兰州交通大学,2017. [33] DEBRUYN JENNIFER M, et al. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil[J]. Applied and Environmental Mcrobiology,2011,77(17):6295-6300. [34] 刘娜,谢学辉,杨波,等.生物强化水解酸化过程前后微生物群落结构变化[J].环境工程学报,2016,10(6):2769-2774. [35] DONG X L, GUDIGOPURAM B R. Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique[J]. Bioresource Technology,2009,101(4):1175-1182. [36] 赵梦溪. 2-OG对蓝细菌氮代谢调控转录因子NtcA的DNA结合能力影响的结构研究[C]//第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集:中国生物物理学会,2009:2. [37] STARR E P, SHI S J, BLAZEWICZ S J, et al. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon[J]. Microbiome,2018,6(1):1-12. [38] KINDAICHI T, YAMAOKA S, UEHARA R, et al. Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge[J]. FEMS Microbiology Ecology, 2016, 92(6):1-11. [39] 李佳,张亮,刘杰,等. 城市污水处理厂缺氧池短程反硝化现象及影响因素研究[J]. 环境科学学报,2021,41(1):109-117. [40] 曹雁,王桐屿,秦玉洁,等.厌氧氨氧化反应器脱氮性能及细菌群落多样性分析[J].环境科学,2017,38(4):1544-1550. [41] DEBRUYN J M, LAUREN T N, MARIAM N F, et al. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil[J]. Applied and Environmental Microbiology, 2011, 77(17):6295-300. [42] 欧国腾.艳山姜的育苗及栽培技术[J].林业科技开发,2002(2):54. [43] 曹彦强,闫小娟,罗红燕,等.不同酸碱性紫色土的硝化活性及微生物群落组成[J].土壤学报,2018,55(1):194-202. [44] 王伟,赵中原,张鑫,等.不同外碳源对尾水极限脱氮性能及微生物群落结构的影响[J].环境科学,2022,43(9):4717-4926. [45] CHEN R W, HE Y Q, CUI Y Q, et al. Diversity and distribution of uncultured and cultured gaiellales and rubrobacterales in south China sea sediments[J]. Frontiers in Microbiology, 2021, 12:657072. [46] 陈少萍.朱蕉栽培管理[J].中国花卉园艺,2015(6):27-29. [47] 严群,丁越,温慧凯,等.生物基质对SWIS脱氮效果及微生物的影响[J].环境工程学报,2019,13(5):1099-1105. [48] 于景丽,夏晶晶,李传虹,等.锡林河流域Nitrospira的生态位分化及环境驱动力[J].微生物学通报,2020,47(5):1418-1429. [49] 朱彤,贾若坦,梁启煜,等.厌氧氨氧化反应器运行过程微生物群落演替分析[J].东北大学学报(自然科学版),2018,39(5):693-698.
点击查看大图
计量
- 文章访问数: 230
- HTML全文浏览量: 46
- PDF下载量: 3
- 被引次数: 0