EFFECT OF THERMAL SHOCK ON FABRIC PROPERTIES OF BAG FILTER MATERIALS FOR COAL-FIRED POWER PLANTS
-
摘要: 为研究不同温度的热冲击对PPS+PTFE复合滤料及其覆膜后的织物性能的影响,对比160,180,200℃条件下滤料热处理24 h后,滤料热收缩性、特征孔径、孔径分布以及过滤性能的变化。结果表明:经纬向热收缩率随着温度的升高而增加;且覆膜后低于未覆膜前;未覆膜时随着温度升高,中值孔径先减小后增加,最小孔径增加,在200℃时最小孔径增加至12.08 μm;覆膜后,随着温度升高,中值孔径和最小孔径均先增加后减小;受特征孔径和孔径分布的影响,未覆膜时,未加热滤料的孔径分布最为集中,主要分布在12.54~13.25 μm,其对0.7~2.5 μm的PM2.5分级过滤效率可达到70%以上,高于3组加热后的过滤效率;覆膜后,200℃下的孔径分布最为集中,分级过滤效率最高,对0.5~2.5 μm的微细颗粒物分级过滤效率可达到80%以上。Abstract: In order to study the effect of thermal shock at different temperatures on properties of PPS and PTFE composite filter materials and their coated fabrics, the changes in heat shrinkage, characteristic pore size, pore size distribution and filtration performance of filter materials after 24 h of treatment were compared, under the temperature of 160, 180, 200 ℃. The results showed that latitude and longitude heat shrinkage rate increased with the increase in temperature. After lamination, the membrane played a certain protective role on the filter material, so the longitude and latitude heat shrinkage rate after the coating was lower than the longitude and latitude heat shrinkage rate, before the film was coated. Before the lamination, with the increase of temperature, the median pore size decreased first and then increased, the minimum pore size increased, and the minimum pore size increased to 12.08 μm at 200 ℃; after the lamination, with the increase of temperature, the median aperture and the minimum pore size were increased first and then decreased. Affected by the characteristic aperture and pore size distribution, the pore size distribution of the uncoated film was the most concentrated, mainly distributed between 12.54 μm and 13.25 μm, and its PM2.5 classification filtration efficiency with a grain size of 0.7 to 2.5 μm was about 70%, higher than the filtration efficiency after heating in three groups. After lamination, the pore size distribution was most concentrated when heating at 200 ℃, the classification filtration efficiency was the highest, and the PM2.5 classification filtration efficiency reached 80% above for the fine particulate matter with a grain size of 0.5 to 2.5 μm.
-
[1] 严刚,燕丽. "十二五"我国大气颗粒物污染防治对策[J]. 环境与可持续发展,2011, 36(5):20-23. [2] 殷焕荣,李茹雅,闫三保,等. 水泥窑布袋除尘几种常用滤料的性能研究[J]. 四川建材,2011, 37(4):23-25. [3] 梁云,胡健,周雪松,等. 纤维过滤材料孔径及孔径分布测试方法的研究[J]. 纺织科学研究,2004, 15(4):23-26. [4] KOSIOL P, HANSMANN B, ULBRICHT M, et al. Determination of pore size distributions of virus filtration membranes using gold nanoparticles and their correlation with virus retention[J]. Journal of Membrane Science, 2017, 533(4):289-301. [5] FAURE Y H, GOURC J, GENDRIN P. Structural study of porometry and filtration opening size of geotextiles[J]. Geosynthetics:Microstructure and Performance, 1990, 1076(1):102-119. [6] WANG X L, TSURU T, NAKAO S, et al. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes[J]. Journal of Membrane Science, 1997, 135(1):19-32. [7] ZEMAN L, WALES M. Steric rejection of polymeric solutes by membranes with uniform pore size distribution[J]. Separation Science and Technology, 1981, 16(3):275-290. [8] MATSUURA T. Synthetic Membranes and membrane separation processes[M]. Boca Raton:CRC Press, 1993. [9] BROWN R C. The pore size distribution of model filters produced by random fragmentation described in terms of the Weibull distribution[J]. Chemical Engineering Science, 1994, 49(1):145-146. [10] CHAPUIS O, PRAT M, QUINTARD M, et al. Two-phase flow and evaporation in model fibrous media:application to the gas diffusion layer of PEM fuel cells[J]. Journal of Power Sources, 2008, 178(1):258-268. [11] NAKAMURA K, SUDA T, MATSUMOTO K. Characterization of pore size distribution of non-woven fibrous filter by inscribed sphere within 3D filter model[J]. Separation and Purification Technology, 2018, 197(1):289-294. [12] 王立波,沈恒根,王振华,等. PSA/BAS水刺滤料耐高温性能研究[J]. 产业用纺织品,2012, 30(1):24-28. [13] 董洁,孙润军,陈美玉,等. 不同后处理下的PPS针刺毡的性能比较[J]. 西安工程大学学报,2014, 28(6):668-671. [14] 闫雪. 燃煤电厂锅炉袋式除尘器用滤料技术的基本性能测试及分析[D]. 上海:东华大学,2018. [15] 中华人民共和国国家安全生产监督管理总局. 袋式除尘器技术要求:GB/T 6719-2009[S]. 北京:中国标准出版社,2009. [16] 武松梅,袁传刚. 非织造材料孔径与过滤性能关系的研究[J]. 产业用纺织品,2010, 28(1):12-14. [17] 杨勇,宋存义,童震松,等. 温度对新旧聚苯硫醚滤料力学性能的影响[J]. 环境工程学报,2015, 9(10):5005-5010. [18] 王辉. PPS滤料老化与耐久性实验研究[D]. 沈阳:东北大学,2011. [19] 北京化工大学. 微细粉尘粒子的高效捕集技术[Z]. 2009. [20] KITAMURA T, OKABE S, TANIGAKI M, et al. Morphology change in polytetrafluoroethylene(PTFE) porous membrane caused by heat treatment[J]. Polymer Engineering and Science, 2000, 40(3):809-817. [21] 聂雪丽,李清,沈恒根. 钢铁行业袋式除尘用滤料孔径与微细粉尘捕集特性关系研究[J]. 环境工程,2016, 34(9):70-75.
点击查看大图
计量
- 文章访问数: 109
- HTML全文浏览量: 23
- PDF下载量: 4
- 被引次数: 0