NUMERICAL SIMULATION ON SCALING BY LEACHATE PIPE TRANSPORT BASED ON CFD
-
摘要: 为缓解垃圾渗滤液输运对管道的结垢影响,设计了渗滤液浸置管材的结垢实验,以实验数据驱动计算流体动力学建模,模拟了渗滤液在直管和90°弯管中的结垢变化趋势,探究了不同管型中垢物的沉积变化特征,分析了温度、流速、管壁粗糙度、垢物粒径等因素对垢物沉积的影响。结果表明:渗滤液输运管道垢物中无机垢和有机垢的占比分别为75.6%和24.4%,垢物晶体成分主要是CaCO3,伴有少量NaCl;垢物沉积量与温度呈正相关,与流速、污垢粒径呈负相关,壁面粗糙度对沉积量影响相对较小;直管和90°弯管2种管型内垢物在多个影响因素作用下的平均沉积率分别为1.26%和7.45%,90°弯管内垢物沉积量显著大于直管。该研究结果可为渗滤液输运管路系统设计与优化提供科学依据。Abstract: To mitigate the scaling by landfill leachate pipe transport, this study designed a fouling experiment by placing the pipe materials into the leachate. The computational fluid dynamics modelling was driven by the experimental data, to simulate the scaling process when the leachate flowing a straight pipe and 90° elbow-shaped pipe, respectively. The characteristics of scale deposition regard to the two pipe shapes were discriminated, and the impacts of different factors, including temperature, flow velocity, pipe wall roughness, scale particle size etc., were investigated. The results showed that the proportions of inorganic scale and organic scale in the scales by leachate pipe transport were 75.6% and 24.4%, respectively. The crystal composition of the scales was mainly CaCO3, accompanied by a small amount of NaCl. The scale deposition was positively correlated with temperature, negatively correlated with velocity and scale particle size, while pipe roughness had little effect on the deposition. The scale deposition in the 90° elbow-shaped pipe was larger than that in the straight pipe, and the average deposition rate regarding the straight pipe and 90° elbow pipe was 1.26% and 7.45% by the simulation. The research results can provide insight into the optimal design for the leachate pipe transport system.
-
Key words:
- leachate /
- CFD /
- scaling /
- simulation /
- transportation pipe
-
[1] BAI Z T, WANG Y Q, SHAN M J, et al. Study on anti-scaling of landfill leachate treated by evaporation method[J]. Water Science and Technology, 2021, 84(1/2/3):122-134. [2] VANGULCK J, ROWE R K. Influence of landfill leachate suspended solids on clog (bio rock) formation[J]. Waste Management, 2004, 24(7):723-738. [3] XIA Y, ZHANG H, PHOUNGTHONG K, et al. Leaching characteristics of calcium-based compounds in MSWI Residues:from the viewpoint of clogging risk[J]. Waste Management, 2015,42(8):93-100. [4] LOZECZNIK S, SPARLING R, CLARK S P, et al. Acetate and propionate impact on the methanogenesis of landfill leachate and the reduction of clogging components[J]. Bioresource Technology, 2012, 104:37-43. [5] RITTMANN B E, BANASZAK J E, COOKE A, et al. Biogeochemical evaluation of mechanisms controlling CaCO3(s) precipitation in landfill leachate-collection systems[J]. Journal of Environmental Engineering, 2003, 129(8):723-730. [6] 刘诗尧, 杨坪. 现代卫生填埋场渗滤液收集系统导排层阻塞作用研究[J]. 环境工程, 2015, 33(11):125-128. [7] LIU Y L, SUN W X, DU B, et al. The physical clogging of the landfill leachate collection system in China:based on filtration test and numerical modelling[J]. International Journal of Environmental Research and Public Health, 2018, 15:318. [8] 薛丹丹, 刘丹, 李军, 等. 垃圾渗滤液输送管道结垢原因分析[J]. 四川环境, 2008, 27(6):9-12. [9] ROWE R K, ARMSTRONG M D, CULLIMORE D R. Mass loading and the rate of clogging due to municipal solid waste leachate[J]. Canadian Geotechnical Journal, 2000, 37(2):355-370. [10] 占美丽, 张国栋, 范全升, 等. 填埋场渗滤液输送管道结垢成因分析及解决措施[J]. 山东化工, 2021, 50(7):259-260,262. [11] 李敏, 赵锐, 邱忠平, 等. 渗滤液对不同管材的结垢性腐蚀研究[J]. 环境工程, 2020, 38(8):76-81. [12] SOMATHILAKE M K P T, HETTIARATCHI J P A. Struvite formation in leachate recirculation pipes of bioreactor landfills[J]. Journal of Solid Waste Technology and Management, 2012, 38:291-299. [13] ZHAO R, WANG X Q, CHEN X L, et al. Impacts of different aged landfill leachate on PVC corrosion[J]. Environmental Science and Pollution Research, 2019, 26(12):18256-18266. [14] 李敏, 赵锐, 杨天学, 等. 不同填埋年龄期垃圾渗滤液对HDPE管材结垢影响[J]. 环境科学研究, 2021, 34(5):1148-1156. [15] ZHAO R, LI M, MA S D, et al. Material selection for landfill leachate piping by using a grey target decision-making approach[J]. Environmental Science and Pollution Research, 2021, 28:494-502. [16] 王建龙, 秦美娜, 黄涛, 等. 基于CFD的雨水调蓄池颗粒物沉淀特性研究[J]. 环境工程, 2021, 39(12):44-50. [17] 聂鹏飞, 高志, 孟德润, 等. CFD数值模拟在两级串塔脱硫系统中的应用[J]. 环境工程, 2021, 39(8):119-124,130. [18] PÄÄKKÖNEN T M, OJANIEMI U, PÄTTIKANGAS T, et al. CFD modelling of CaCO3 crystallization fouling on heat transfer surfaces[J]. International Journal of Heat & Mass Transfer, 2016, 97:618-630. [19] ATSONIOS K, ZENELI M, NIKOLOPOULOS A, et al. Calcium looping process simulation based on an advanced thermodynamic model combined with CFD analysis[J]. Fuel, 2015, 153:370-381. [20] UPPU A, CHAUDHURI A, DAS S P, et al. CFD modeling of gypsum scaling in cross-flow RO filters using moments of particle population balance[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104151. [21] 尹彪, 邓福成, 沈雪峰, 等. 冲缝筛管结垢速率模拟研究[J]. 中国安全生产科学技术, 2021, 17(9):120-125. [22] ZHOU H T, WANG G H, JIA C Q, et al. A novel, coupled CFD-DEM model for the flow characteristics of particles inside a pipe[J]. Water, 2019, 11(11):2381. [23] 刘岩, 秦攀, 洪文鹏. 基于计算流体力学-离散单元法耦合的粗糙壁面颗粒趋壁沉积过程的数值模拟[J]. 科学技术与工程, 2021, 21(13):5216-5222. [24] ALEXANDER K S, DOLLIMORE D, DUNN J G, et al. The determination of cholesterol, calcium carbonate and calcium oxalate in gallstones by thermogravimetry[J]. Thermochimica Acta,1993,215:171-181. [25] 林培滋, 黄世煜, 初惠萍. 温度对碳酸钙结垢过程的影响[J]. 石油与天然气化工, 1999, 28(2):128-129. [26] 李静雅, 徐力生, 徐蒙. 基于CFD-DPM耦合法新型差压密度计中水泥浆液流动特性分析[J]. 中南大学学报(自然科学版), 2017, 48(5):1308-1315. [27] TSUDA A, FRANK S H, JAMES P B. Particle transport and deposition:basic physics of particle kinetics[J]. Comprehensive Physiology, 2013, 3(4):1437-1471. [28] TIAN L, AHMADI G. Particle deposition in turbulent duct flows-comparisons of different model predictions[J]. Journal of Aerosol Science, 2007, 38(4):377-397. [29] 刘洪涛, 张力. 微细颗粒壁面沉积的数值研究[J]. 工程热物理学报, 2010, 31(3):431-434. [30] 贾惠芹, 杨晓. 基于Fluent的气井放喷时气液两相流流场仿真研究[J]. 国外电子测量技术, 2019, 38(1):48-51. [31] 宋付权, 陈晓星. 液体壁面滑移的分子动力学研究[J]. 水动力学研究与进展(A辑), 2012, 27(1):80-86. [32] 陈磊, 李长俊, 季楚凌. 水平弯管内硫沉积数值模拟研究[J]. 中国安全生产科学技术, 2015(2):28-35. [33] 邢晓凯, 全贞花, 陈永昌, 等. CaSO4于换热面上结垢过程的控制机理分析[J]. 北京工业大学学报, 2006, 32(4):357-362. [34] 杨欢, 赵华, 陈腾巍. 油气地面管线内结垢固体颗粒沉积影响因素的实验研究[J]. 科学技术与工程, 2016, 16(9):80-85. [35] DENG K H, LIN Y H, TANG W, et al. Experimental and numerical study on dynamic scaling mechanism of glass fiber reinforced plastics pipeline[J]. Composite Structures, 2019, 225:111111. [36] 袁棚, 柳雨萌, 简霖, 等. 新疆某油田转油泵结垢成因分析及除垢对策研究[J]. 油气田地面工程, 2021, 40(10):88-92. [37] HE S, ARIYARATNE C, VARDY A E. A computational study of wall friction and turbulence dynamics in accelerating pipe flows[J]. Computers & fluids, 2008, 37(6):674-689. [38] 隋冰, 刘刚, 李博, 等. 颗粒在起伏成品油管道中的沉积运移规律[J]. 石油学报, 2016, 37(4):523-530. [39] 李欢, 周颖君, 刘建国, 等. 我国厨余垃圾处理模式的综合比较和优化策略[J]. 环境工程学报, 2021, 15(7):2398-2408. [40] 蒋旭光, 段茵, 吕国钧, 等. 垃圾焚烧飞灰中重金属固化稳定机理及系统评价方法的研究进展[J]. 环境工程学报, 2022, 16(1):10-19. [41] LI M, ZHAO R, YANG T X, et al. Fabrication of anti-scaling HDPE/fluorinated acrylate polymer/nano-silica composite for landfill leachate piping system[J]. Chemosphere, 2022, 284:131302.
点击查看大图
计量
- 文章访问数: 163
- HTML全文浏览量: 9
- PDF下载量: 9
- 被引次数: 0