中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CFD的渗滤液输运管道结垢特性的数值模拟

赵锐 杜森 李敏 刘妍 张路子平

赵锐, 杜森, 李敏, 刘妍, 张路子平. 基于CFD的渗滤液输运管道结垢特性的数值模拟[J]. 环境工程, 2023, 41(3): 111-118,128. doi: 10.13205/j.hjgc.202303015
引用本文: 赵锐, 杜森, 李敏, 刘妍, 张路子平. 基于CFD的渗滤液输运管道结垢特性的数值模拟[J]. 环境工程, 2023, 41(3): 111-118,128. doi: 10.13205/j.hjgc.202303015
ZHAO Rui, DU Sen, LI Min, LIU Yan, ZHANG Luziping. NUMERICAL SIMULATION ON SCALING BY LEACHATE PIPE TRANSPORT BASED ON CFD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 111-118,128. doi: 10.13205/j.hjgc.202303015
Citation: ZHAO Rui, DU Sen, LI Min, LIU Yan, ZHANG Luziping. NUMERICAL SIMULATION ON SCALING BY LEACHATE PIPE TRANSPORT BASED ON CFD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 111-118,128. doi: 10.13205/j.hjgc.202303015

基于CFD的渗滤液输运管道结垢特性的数值模拟

doi: 10.13205/j.hjgc.202303015
基金项目: 

四川循环经济研究中心课题 (XHJJ-2002)

中央高校基本科研业务费专项资金 (2682021ZTPY088)

国家重点研发计划专项(2019YFC1905600)

国家自然科学基金项目(41571520)

四川省青年科技创新团队资助(2022JDTD0005)

四川省区域创新合作项目(2022YFQ0040)

详细信息
    作者简介:

    赵锐(1983-),男,教授,主要研究方向为环境可持续设计与技术。ruizhao@swjtu.edu.cn

    通讯作者:

    李敏(1982-),女,高级工程师,主要研究方向为环境系统工程。lmscu@126.com

NUMERICAL SIMULATION ON SCALING BY LEACHATE PIPE TRANSPORT BASED ON CFD

  • 摘要: 为缓解垃圾渗滤液输运对管道的结垢影响,设计了渗滤液浸置管材的结垢实验,以实验数据驱动计算流体动力学建模,模拟了渗滤液在直管和90°弯管中的结垢变化趋势,探究了不同管型中垢物的沉积变化特征,分析了温度、流速、管壁粗糙度、垢物粒径等因素对垢物沉积的影响。结果表明:渗滤液输运管道垢物中无机垢和有机垢的占比分别为75.6%和24.4%,垢物晶体成分主要是CaCO3,伴有少量NaCl;垢物沉积量与温度呈正相关,与流速、污垢粒径呈负相关,壁面粗糙度对沉积量影响相对较小;直管和90°弯管2种管型内垢物在多个影响因素作用下的平均沉积率分别为1.26%和7.45%,90°弯管内垢物沉积量显著大于直管。该研究结果可为渗滤液输运管路系统设计与优化提供科学依据。
  • [1] BAI Z T, WANG Y Q, SHAN M J, et al. Study on anti-scaling of landfill leachate treated by evaporation method[J]. Water Science and Technology, 2021, 84(1/2/3):122-134.
    [2] VANGULCK J, ROWE R K. Influence of landfill leachate suspended solids on clog (bio rock) formation[J]. Waste Management, 2004, 24(7):723-738.
    [3] XIA Y, ZHANG H, PHOUNGTHONG K, et al. Leaching characteristics of calcium-based compounds in MSWI Residues:from the viewpoint of clogging risk[J]. Waste Management, 2015,42(8):93-100.
    [4] LOZECZNIK S, SPARLING R, CLARK S P, et al. Acetate and propionate impact on the methanogenesis of landfill leachate and the reduction of clogging components[J]. Bioresource Technology, 2012, 104:37-43.
    [5] RITTMANN B E, BANASZAK J E, COOKE A, et al. Biogeochemical evaluation of mechanisms controlling CaCO3(s) precipitation in landfill leachate-collection systems[J]. Journal of Environmental Engineering, 2003, 129(8):723-730.
    [6] 刘诗尧, 杨坪. 现代卫生填埋场渗滤液收集系统导排层阻塞作用研究[J]. 环境工程, 2015, 33(11):125-128.
    [7] LIU Y L, SUN W X, DU B, et al. The physical clogging of the landfill leachate collection system in China:based on filtration test and numerical modelling[J]. International Journal of Environmental Research and Public Health, 2018, 15:318.
    [8] 薛丹丹, 刘丹, 李军, 等. 垃圾渗滤液输送管道结垢原因分析[J]. 四川环境, 2008, 27(6):9-12.
    [9] ROWE R K, ARMSTRONG M D, CULLIMORE D R. Mass loading and the rate of clogging due to municipal solid waste leachate[J]. Canadian Geotechnical Journal, 2000, 37(2):355-370.
    [10] 占美丽, 张国栋, 范全升, 等. 填埋场渗滤液输送管道结垢成因分析及解决措施[J]. 山东化工, 2021, 50(7):259-260

    ,262.
    [11] 李敏, 赵锐, 邱忠平, 等. 渗滤液对不同管材的结垢性腐蚀研究[J]. 环境工程, 2020, 38(8):76-81.
    [12] SOMATHILAKE M K P T, HETTIARATCHI J P A. Struvite formation in leachate recirculation pipes of bioreactor landfills[J]. Journal of Solid Waste Technology and Management, 2012, 38:291-299.
    [13] ZHAO R, WANG X Q, CHEN X L, et al. Impacts of different aged landfill leachate on PVC corrosion[J]. Environmental Science and Pollution Research, 2019, 26(12):18256-18266.
    [14] 李敏, 赵锐, 杨天学, 等. 不同填埋年龄期垃圾渗滤液对HDPE管材结垢影响[J]. 环境科学研究, 2021, 34(5):1148-1156.
    [15] ZHAO R, LI M, MA S D, et al. Material selection for landfill leachate piping by using a grey target decision-making approach[J]. Environmental Science and Pollution Research, 2021, 28:494-502.
    [16] 王建龙, 秦美娜, 黄涛, 等. 基于CFD的雨水调蓄池颗粒物沉淀特性研究[J]. 环境工程, 2021, 39(12):44-50.
    [17] 聂鹏飞, 高志, 孟德润, 等. CFD数值模拟在两级串塔脱硫系统中的应用[J]. 环境工程, 2021, 39(8):119-124

    ,130.
    [18] PÄÄKKÖNEN T M, OJANIEMI U, PÄTTIKANGAS T, et al. CFD modelling of CaCO3 crystallization fouling on heat transfer surfaces[J]. International Journal of Heat & Mass Transfer, 2016, 97:618-630.
    [19] ATSONIOS K, ZENELI M, NIKOLOPOULOS A, et al. Calcium looping process simulation based on an advanced thermodynamic model combined with CFD analysis[J]. Fuel, 2015, 153:370-381.
    [20] UPPU A, CHAUDHURI A, DAS S P, et al. CFD modeling of gypsum scaling in cross-flow RO filters using moments of particle population balance[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104151.
    [21] 尹彪, 邓福成, 沈雪峰, 等. 冲缝筛管结垢速率模拟研究[J]. 中国安全生产科学技术, 2021, 17(9):120-125.
    [22] ZHOU H T, WANG G H, JIA C Q, et al. A novel, coupled CFD-DEM model for the flow characteristics of particles inside a pipe[J]. Water, 2019, 11(11):2381.
    [23] 刘岩, 秦攀, 洪文鹏. 基于计算流体力学-离散单元法耦合的粗糙壁面颗粒趋壁沉积过程的数值模拟[J]. 科学技术与工程, 2021, 21(13):5216-5222.
    [24] ALEXANDER K S, DOLLIMORE D, DUNN J G, et al. The determination of cholesterol, calcium carbonate and calcium oxalate in gallstones by thermogravimetry[J]. Thermochimica Acta,1993,215:171-181.
    [25] 林培滋, 黄世煜, 初惠萍. 温度对碳酸钙结垢过程的影响[J]. 石油与天然气化工, 1999, 28(2):128-129.
    [26] 李静雅, 徐力生, 徐蒙. 基于CFD-DPM耦合法新型差压密度计中水泥浆液流动特性分析[J]. 中南大学学报(自然科学版), 2017, 48(5):1308-1315.
    [27] TSUDA A, FRANK S H, JAMES P B. Particle transport and deposition:basic physics of particle kinetics[J]. Comprehensive Physiology, 2013, 3(4):1437-1471.
    [28] TIAN L, AHMADI G. Particle deposition in turbulent duct flows-comparisons of different model predictions[J]. Journal of Aerosol Science, 2007, 38(4):377-397.
    [29] 刘洪涛, 张力. 微细颗粒壁面沉积的数值研究[J]. 工程热物理学报, 2010, 31(3):431-434.
    [30] 贾惠芹, 杨晓. 基于Fluent的气井放喷时气液两相流流场仿真研究[J]. 国外电子测量技术, 2019, 38(1):48-51.
    [31] 宋付权, 陈晓星. 液体壁面滑移的分子动力学研究[J]. 水动力学研究与进展(A辑), 2012, 27(1):80-86.
    [32] 陈磊, 李长俊, 季楚凌. 水平弯管内硫沉积数值模拟研究[J]. 中国安全生产科学技术, 2015(2):28-35.
    [33] 邢晓凯, 全贞花, 陈永昌, 等. CaSO4于换热面上结垢过程的控制机理分析[J]. 北京工业大学学报, 2006, 32(4):357-362.
    [34] 杨欢, 赵华, 陈腾巍. 油气地面管线内结垢固体颗粒沉积影响因素的实验研究[J]. 科学技术与工程, 2016, 16(9):80-85.
    [35] DENG K H, LIN Y H, TANG W, et al. Experimental and numerical study on dynamic scaling mechanism of glass fiber reinforced plastics pipeline[J]. Composite Structures, 2019, 225:111111.
    [36] 袁棚, 柳雨萌, 简霖, 等. 新疆某油田转油泵结垢成因分析及除垢对策研究[J]. 油气田地面工程, 2021, 40(10):88-92.
    [37] HE S, ARIYARATNE C, VARDY A E. A computational study of wall friction and turbulence dynamics in accelerating pipe flows[J]. Computers & fluids, 2008, 37(6):674-689.
    [38] 隋冰, 刘刚, 李博, 等. 颗粒在起伏成品油管道中的沉积运移规律[J]. 石油学报, 2016, 37(4):523-530.
    [39] 李欢, 周颖君, 刘建国, 等. 我国厨余垃圾处理模式的综合比较和优化策略[J]. 环境工程学报, 2021, 15(7):2398-2408.
    [40] 蒋旭光, 段茵, 吕国钧, 等. 垃圾焚烧飞灰中重金属固化稳定机理及系统评价方法的研究进展[J]. 环境工程学报, 2022, 16(1):10-19.
    [41] LI M, ZHAO R, YANG T X, et al. Fabrication of anti-scaling HDPE/fluorinated acrylate polymer/nano-silica composite for landfill leachate piping system[J]. Chemosphere, 2022, 284:131302.
  • 加载中
计量
  • 文章访问数:  93
  • HTML全文浏览量:  5
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 网络出版日期:  2023-05-26
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回