EFFECT OF SAPONIN ON BIOLOGICAL OXIDATION OF PYRITE-CONTAINING SOLID WASTE FROM MINING AND DRESSING
-
摘要: 为提升含硫铁矿采选固废生物氧化分解效率,以皂素-微生物-含硫铁矿采选固废为反应体系,研究皂素对含硫铁矿采选固废生物氧化过程中H+、Fe及S释放的影响,并探讨其作用机制。结果表明:添加30 mg/L皂素,生物氧化38 d后,含硫铁矿采选固废释放H+0.55 mmol/g、总Fe 111.4 mg/g和SO42- 359.3 mg/g,相比未添加皂素的空白对照组,释放量分别提升了175%、82.9%和39.2%。皂素的添加,促进了矿物表面沉淀层(黄钾铁矾、S0)的氧化溶解,并抑制了次生矿物黄钾铁矾生成,从而减缓了钝化作用;可显著减小溶液与矿物表面的接触角、表面张力,增强溶浸液Fe3+在矿物微孔裂隙中的渗透作用,从而加速了含硫铁矿采选固废的氧化与溶解。研究结果可为皂素在含硫铁矿采选固废生物氧化的应用提供理论支撑。Abstract: In order to improve the efficiency of biological oxidative decomposition of pyrite-containing solid waste from mining and dressing, this paper investigated the effect of saponin on the release of H+, Fe and S in the biological oxidation process of pyrite-containing solid waste from mining and dressing, by using saponin-microorganism-sulfurous iron ore mining solid waste as a reaction system, and its mechanism was discussed. The results showed that it could release 0.55 mmol/g of H+, and 111.4 mg/g of total Fe, as well as 359.3 mg/g of SO42- by adding 30 mg/L saponin and bio-oxidizing for 38 days from the pyrite-containing solid waste of mining and dressing, which were increased by 175%, 82.9% and 39.2%, respectively compared with the blank control group. Firstly, the addition of saponins accelerated the oxidative dissolution of the sendiment layer (jarosite, S0) on the mineral surface, and inhibited the formation of secondary mineral jarosite, thus slowed down the passivation effect. Secondly, it could significantly reduce the contact angle and surface tension between the solution and the mineral surface, and enhance the penetration of Fe3+ in the mineral microporous cracks, so as to accelerate the oxidation and dissolution of pyrite-containing solid waste from mining and dressing. The research results can provide theoretical support for application of saponin in the biological oxidation of pyrite-containing solid waste from mining and dressing.
-
[1] WANG S H, JIN H X, DENG Y, et al. Comprehensive utilization status of red mud in China:a critical review[J]. Journal of Cleaner Production, 2021, 289(11):125136. [2] HU G Y, FEI L, KHOSO S A, et al. Staged leaching behavior of red mud during dealkalization with mild acid[J]. Hydrometallurgy, 2020, 196:105422. [3] 梅贤功, 孙宗毅, 左文亮, 等. 国外氧化铝赤泥脱钠的进展[J]. 轻金属, 1992(7):21-24. [4] LOGAN T C, SEAL T, BRIERLEY J A. Whole-ore heap biooxidation of sulfidic gold-bearing ores[M]. Biomining. Springer, 2007:113-138. [5] 党志, 卢桂宁, 杨琛, 等. 金属硫化物矿区环境污染的源头控制与修复技术[J]. 华南理工大学学报(自然科学版), 2012, 40(10):83-89. [6] PARK I, TABELIN C B, JEON S, et al. A review of recent strategies for acid mine drainage prevention and mine tailings recycling[J]. Chemosphere, 2019, 219:588-606. [7] 艾纯明, 孙萍萍, 王贻明, 等. 表面活性剂在溶浸采矿中的研究与应用现状[J]. 金属矿山, 2019(5):9-13. [8] 张瑞洋, 卢涛, 孙春宝, 等. 表面活性剂吐温20对胶硫钼矿生物浸出的促进机理[J]. 工程科学学报, 2018, 40(7):793-799. [9] 张德诚, 朱莉, 罗学刚. 低温下非离子表面活性剂加速细菌浸出黄铜矿[J]. 化工进展, 2008, 27(4):540-543. [10] LAN Z Y, HU Y H, QIN W Q. Effect of surfactant OPD on the bioleaching of marmatite[J]. Minerals Engineering, 2009, 22(1):10-13. [11] ZHANG Y B, ZHANG B Y, YANG S Q, et al. Enhancing the leaching effect of an ion-absorbed rare earth ore by ameliorating the seepage effect with sodium dodecyl sulfate surfactant[J]. International Journal of Mining Science and Technology, 2021, 31(6):995-1002. [12] 刘俊, 龚文琪, 申求实, 等. 低品位磷矿的生物浸出研究[J]. 金属矿山, 2008(7):54-57. [13] LIU Z F, LI Z G, ZHONG H, et al. Recent advances in the environmental applications of biosurfactant saponins:a review[J]. Journal of Environmental Chemical Engineering, 2017, 5(6):6030-6038. [14] 莫晓兰, 林海, 傅开彬, 等. 黄铁矿促进黄铜矿微生物浸出影响因素[J]. 北京科技大学学报, 2012, 34(7):761-768. [15] 宋永伟, 王鹤茹, 梁剑茹, 等. 嗜酸性氧化亚铁硫杆菌介导的次生铁矿物形成的影响因素分析[J]. 环境科学学报, 2018, 38(3):1024-1030. [16] ZAYNAB M, SHARIF Y, ABBAS S, et al. Saponin toxicity as key player in plant defence against pathogens[J]. Toxicon, 2021, 193:21-27. [17] 陈炳辉, 万茉莉, 王智美, 等. 粤北大宝山多金属矿酸性矿山废水中氧化亚铁硫杆菌对黄铁矿的生物氧化作用研究[J]. 岩石矿物学杂志, 2010, 29(5):562-568. [18] JIAO B Q, ZHANG J, LI D W, et al. The effect on leaching rate of Copper in Chalcopyrite Tailings by Acidithiobacillus ferrooxidans induced by UV[J]. Disaster Advances, 2012, 5(4):254-257. [19] SANDY JONES F, BIGHAM J M, GRAMP J P, et al. Synthesis and properties of ternary (K, NH4, H3O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions[J]. Materials Science & Engineering:C, 2014, 44:391-399. [20] LIU F W, ZHOU J, JIN T J, et al. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans[J]. Water Science & Technology, 2016, 73(6):1442-1453. [21] 毕文龙, 董燕, 刘奋武, 等. 温度与矿浆浓度对硫铁矿生物氧化污染物释放的影响[J]. 生态学杂志, 2019, 38(11):3434-3440. [22] 乔星星, 刘冠兰, 周立祥, 等. 氧化亚铁硫杆菌密度与营养供给对硫铁矿生物氧化的影响[J]. 环境科学学报, 2018, 38(2):449-456. [23] 吴爱祥, 艾纯明, 王贻明, 等. 表面活性剂强化铜矿石浸出[J]. 北京科技大学学报, 2013, 35(6):709-713. [24] TU Z H, GUO C L, ZHANG T, et al. Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans[J]. Hydrometallurgy, 2017, 167:58-65. [25] DAOUD J, KARAMANEV D. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans[J]. Minerals Engineering, 2006, 19(9):960-967. [26] PRADHAN N, NATHSARMA K C, RAO K S, et al. Heap bioleaching of chalcopyrite:a review[J]. Minerals Engineering, 2008, 21(5):355-365. [27] ZHANG R Y, WEI D Z, SHEN Y B, et al. Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans[J]. Minerals Engineering, 2016, 95:74-78. [28] SASAKI K, NAKAMUTA Y, HIRAJIMA T, et al. Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans[J]. Hydrometallurgy, 2009, 95(1/2):153-158. [29] KINNUNEN P H, PUHAKKA J A. Chloride-promoted leaching of chalcopyrite concentrate by biologically-produced ferric sulfate[J]. Journal of Chemical Technology & Biotechnology, 2004, 79:830-834. [30] SAND W, GEHRKE T, JOZSA P G, et al. (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching[J]. Hydrometallurgy, 2001, 59(2):159-175.
点击查看大图
计量
- 文章访问数: 114
- HTML全文浏览量: 24
- PDF下载量: 3
- 被引次数: 0