CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢渣中重金属在水泥基胶凝材料的长期浸出行为

李沙 王肇嘉 王明威 郑永超 战佳宇

李沙, 王肇嘉, 王明威, 郑永超, 战佳宇. 钢渣中重金属在水泥基胶凝材料的长期浸出行为[J]. 环境工程, 2023, 41(3): 136-142. doi: 10.13205/j.hjgc.202303018
引用本文: 李沙, 王肇嘉, 王明威, 郑永超, 战佳宇. 钢渣中重金属在水泥基胶凝材料的长期浸出行为[J]. 环境工程, 2023, 41(3): 136-142. doi: 10.13205/j.hjgc.202303018
LI Sha, WANG Zhaojia, WANG Mingwei, ZHENG Yongchao, ZHAN Jiayu. LONG-TERM LEACHING BEHAVIORS OF HEAVY METALS FROM STEEL SLAG IN CEMENT-BASED CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 136-142. doi: 10.13205/j.hjgc.202303018
Citation: LI Sha, WANG Zhaojia, WANG Mingwei, ZHENG Yongchao, ZHAN Jiayu. LONG-TERM LEACHING BEHAVIORS OF HEAVY METALS FROM STEEL SLAG IN CEMENT-BASED CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 136-142. doi: 10.13205/j.hjgc.202303018

钢渣中重金属在水泥基胶凝材料的长期浸出行为

doi: 10.13205/j.hjgc.202303018
基金项目: 

国家重点研发计划项目(2018YFC1903602)

河北省科技重大专项(21283804Z)

详细信息
    作者简介:

    李沙(1990-),女,工程师,主要研究方向为固废制备建材的环境风险评价。13031188952@163.com

    通讯作者:

    王肇嘉(1965-),男,教授级高工,主要研究方向为工业固废制备绿色建材。Zhajiawang@123.com

LONG-TERM LEACHING BEHAVIORS OF HEAVY METALS FROM STEEL SLAG IN CEMENT-BASED CEMENTITIOUS MATERIALS

  • 摘要: 采用连续水槽浸出试验研究了钢渣在胶砂中重金属的长期浸出规律,并通过浸出动力学模型拟合预测了胶砂30 a重金属累积浸出量。结果表明:钢渣中含有As、Cr、Cu、Mn、Ni、Pb和Zn等重金属,制备成胶砂后Cr、Cu、Ni和Zn浸出量偏高。随着浸出时间的增加,溶液中重金属离子累积浸出量先快速增加后减缓;胶砂预先养护龄期越长,重金属累积浸出量越低,对重金属Zn的固化作用越明显。水泥胶砂中Cr和Ni、Cu和Zn的浸出规律分别符合Elovich方程和双常数速率方程,掺钢渣胶砂中Cu的浸出规律满足双常数速率方程,而Cr、Ni和Zn的浸出规律满足二级动力学方程。通过动力学方程计算,预测掺钢渣胶砂与纯水泥胶砂中Cr、Cu、Ni和Zn的30 a累积浸出量相比分别降低了49.52%、24.02%、47.20%和89.79%。
  • [1] 赵立杰, 张芳.钢渣资源综合利用及发展前景展望[J]. 材料导报, 2020,34(增刊2):319-333.
    [2] GUO J L, BAO Y P, MIN W. Steel slag in China:treatment, recycling, and management[J]. Waste Management, 2018, 78(8):318-330.
    [3] 吴跃东, 彭犇, 吴龙, 等.国内外钢渣处理与资源化利用技术发现现状综述[J].环境工程,2021,39(1):161-165.
    [4] GENCEL O, KARADAG O, OREN O H, et al. Steel slag and its applications in cement and concrete technology:a review[J]. Construction and Building Materials, 2021, 283:122783.
    [5] BAALAMURUGAN J, KUMAR V G, CHANDRASEKARAN S, et al. Recycling of steel slag aggregates for the development of high density concrete:alternative & environment-friendly radiation shielding composite[J]. Composites Part B:Engineering, 2021.216(7):108885.
    [6] MIAH M J, PATOARY M, PAUL S C, et al. Enhancement of mechanical properties and porosity of concrete using steel slag coarse aggregate[J]. Materials, 2020, 13(12):2865.
    [7] LIU J Z, YU B, WANG Q. Application of steel slag in cement treated aggregate base course[J]. Journal of Cleaner Production, 2020, 269:121733.
    [8] 赵德强, 张昺榴, 朱文尚, 等.道路基层复合胶凝材料的性能调控[J].建筑材料学报,2020,23(5):1137-1143.
    [9] XIAO F L, SHU I D, WEI Y F, et al. The mechanical properties of concrete incorporating steel slag as supplementary cementitious material[J]. Key Engineering Materials, 2021, 879:81-90.
    [10] QIANG W, YAN P Y, MI G D. Effect of blended steel slag-GBFS mineral admixture on hydration and strength ofcement[J]. Construction and Building Materials, 2012, 35:8-14.
    [11] KUMARA G, KAWAMOTO K. Steel slag and autoclaved aerated concrete grains as low-cost adsorbents to remove Cd2+ and Pb2+ in wastewater:effects of mixing proportions of grains and liquid-to-solid ratio[J]. Sustainability, 2021, 13(18):1-16.
    [12] MENG F, LIU Q, ZHU G, et al. Experimental study on application of steel slag magnetic tailings replacing part of sintering flux during sintering[J]. Journal of Central South University(Science and Technology), 2017, 48(1):31-38.
    [13] BAO G M, SONG M U, JIAN S, et al. Effect of phosphorus-fluorine-steel slag composite additive on cement clinker sintering[J]. Journal of the Chinese Ceramic Society, 2007,35(3):275-280.
    [14] GAO T M, DAI T, SHEN L, et al. Benefits of using steel slag in cement clinker production for environmental conservation and economic revenue generation[J]. Journal of Cleaner Production, 2020, 282:124538.
    [15] 常钧, 吴昊泽. 钢渣碳化机理研究[J]. 硅酸盐学报, 2010,28(7):1185-1191.
    [16] LUO Z T, WANG Y, YANG G J, et al. Effect of curing temperature on carbonation behavior of steel slag compacts[J]. Construction and Building Materials, 2021, 291:123369.
    [17] HUIJGEN W J J, COMANS R N J. Carbonation of steel slag for CO2 sequestration:leaching of products and reaction mechanisms[J]. Environmental Science & Technology, 2006, 40(8):2790-2796.
    [18] MARIA D R C, MARIA E P R, FRANCISCA P G, et al. Influence of steel slag type on concrete shrinkage[J]. Sustainability, 2020, 13(1):214.
    [19] WANG X J, WANG K, LI J W, et al. Heavy metals migration during the preparation and hydration of an eco-friendly steel slag-based cementitious material[J]. Journal of Cleaner Production,2021,329(20):129715.
    [20] 杨刚, 李辉, 陈华.钢渣微粉对重金属污染土壤的修复及机理研究[J].建筑材料学报,2021,24(2):318-322.
    [21] 鄢琪慧, 倪文, 高巍, 等. 矿渣-钢渣基胶凝材料固砷机理[J]. 中南大学学报(自然科学版), 2019, 50(7):1544-1550.
    [22] Netherlands Normalisation Institute Standard.EA NEN 7375-2004 Leaching characteristics of moulded or monolithic building and waste materials[S].2004.
    [23] 国家环境保护总局.HJ/T 299-2007固体废物浸出毒性浸出方法硫酸硝酸法[S].2007.
    [24] 中国钢铁工业协会.GB/T 20491-2017用于水泥和混凝土中的钢渣粉[S].2017.
    [25] 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991,12(4):12-19.
    [26] 齐立倩. 钢渣水泥复合胶凝材料水化机理和提高其力学性能的研究[D]. 北京:北京化工大学, 2015.
    [27] 王坤. 钢渣基硫铝铁系胶凝材料的制备及重金属迁移特性研究[D]. 济南:山东大学, 2021.
    [28] GOUGAR M L D, SCHEETZ B E, ROY D M, et al. Ettringite and C-S-H Portland cement phases for waste ion immobilization:a review[J]. Waste Management, 1996, 16(4):295-303.
    [29] LI X D, POON C S, SUN H, et al. Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials[J]. Journal of Hazardous Materials, 2001, 82(3):215-230.
    [30] QIAO X C, POON C S, CHEESEMAN C R. Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases[J]. Journal of Hazardous Materials, 2007, 139(2):238-243.
    [31] HALIN C E, AMAL R, BEYDOUN D, et al. Implications of the structure of cementitious wastes containing Pb(Ⅱ), Cd(Ⅱ), As(Ⅴ), and Cr(Ⅵ) on the leaching of metals[J]. Cement & Concrete Research, 2004, 34(7):1093-1102.
    [32] 郑旭涛, 张楠楠, 南姣, 等. 硅酸盐水泥对Cr离子的固化机理及其对铁矾渣的固化应用[J]. 有色金属材料与工程, 2016, 37(2):34-39.
    [33] SHEPHAN D, MALLMANN R, KNOFEL D, et al. High intakes of Cr, Ni, and Zn in clinker:part Ⅱ. Influence on the hydration properties[J]. Cement & Concrete Research, 1999,29(12):1959-1967.
    [34] 薛靖川, 黄启飞, 杨玉飞. 利用电子探针对水泥净浆中Cr、As、Pb分布特征的研究[J]. 环境科学学报, 2011, 31(4):798-804.
    [35] 包勇超. 钢渣粉末处理含量重金属废水实验[J]. 环境工程,2018,36(9):125-132.
    [36] LIU S Y, GAO J, QU B, et al. Adsorption behaviors of heavy metal ions by steel slag-an industrial solidwaste[C]//International Conference on Bioinformatics & Biomedical Engineering. IEEE, 2009.
    [37] 马少健, 刘剩余, 胡治流, 等.钢渣吸附剂对铬和铅重金属离子的吸附特性研究[J].有色矿冶, 2004, 20(4):3-57

    ,59.
    [38] 王登权, 何伟, 王强, 等.重金属在水泥基材料中的固化和浸出研究进展[J].硅酸盐学报,46(5):683-693.
  • 加载中
计量
  • 文章访问数:  152
  • HTML全文浏览量:  18
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 网络出版日期:  2023-05-26
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回