LONG-TERM LEACHING BEHAVIORS OF HEAVY METALS FROM STEEL SLAG IN CEMENT-BASED CEMENTITIOUS MATERIALS
-
摘要: 采用连续水槽浸出试验研究了钢渣在胶砂中重金属的长期浸出规律,并通过浸出动力学模型拟合预测了胶砂30 a重金属累积浸出量。结果表明:钢渣中含有As、Cr、Cu、Mn、Ni、Pb和Zn等重金属,制备成胶砂后Cr、Cu、Ni和Zn浸出量偏高。随着浸出时间的增加,溶液中重金属离子累积浸出量先快速增加后减缓;胶砂预先养护龄期越长,重金属累积浸出量越低,对重金属Zn的固化作用越明显。水泥胶砂中Cr和Ni、Cu和Zn的浸出规律分别符合Elovich方程和双常数速率方程,掺钢渣胶砂中Cu的浸出规律满足双常数速率方程,而Cr、Ni和Zn的浸出规律满足二级动力学方程。通过动力学方程计算,预测掺钢渣胶砂与纯水泥胶砂中Cr、Cu、Ni和Zn的30 a累积浸出量相比分别降低了49.52%、24.02%、47.20%和89.79%。Abstract: The long-term leaching rule of heavy metals from steel slag in the wortar was studied by continuous flume leaching test, and the cumulative leaching amount of heavy metals in 30 years was predicted by fitting the leaching kinetic model. The results showed that the steel slag contained heavy metals such as As, Cr, Cu, Mn, Ni, Pb and Zn, and the leaching amount of Cr, Cu, Ni and Zn was higher after the preparation of mortar. With the increase of leaching time, the cumulative leaching amount of heavy metal ions in the solution increased first and then slowed down; the longer the pre-curing age of the mortar was, the lower the cumulative leaching amount of heavy metals was, and the more obvious the solidification effect on Zn was. The leaching law of Cr and Ni, Cu and Zn in cement mortar conformed to the Elovich equation and double constant rate equation, respectively the leaching law of Cu in steel slag mortar conformed to the double constant rate equation, and the leaching law of Cr, Ni and Zn conformed to the second order kinetic equation. According to the calculation of the kinetic equation, it was predicted that the cumulative leaching amount of Cr, Cu, Ni and Zn in steel slag mortar and pure cement mortar in 30 years was reduced by 49.52%, 24.02%, 47.20% and 89.79%, respectively.
-
Key words:
- steel slag /
- cement-based /
- binding material /
- heavy metal /
- long-term leaching
-
[1] 赵立杰, 张芳.钢渣资源综合利用及发展前景展望[J]. 材料导报, 2020,34(增刊2):319-333. [2] GUO J L, BAO Y P, MIN W. Steel slag in China:treatment, recycling, and management[J]. Waste Management, 2018, 78(8):318-330. [3] 吴跃东, 彭犇, 吴龙, 等.国内外钢渣处理与资源化利用技术发现现状综述[J].环境工程,2021,39(1):161-165. [4] GENCEL O, KARADAG O, OREN O H, et al. Steel slag and its applications in cement and concrete technology:a review[J]. Construction and Building Materials, 2021, 283:122783. [5] BAALAMURUGAN J, KUMAR V G, CHANDRASEKARAN S, et al. Recycling of steel slag aggregates for the development of high density concrete:alternative & environment-friendly radiation shielding composite[J]. Composites Part B:Engineering, 2021.216(7):108885. [6] MIAH M J, PATOARY M, PAUL S C, et al. Enhancement of mechanical properties and porosity of concrete using steel slag coarse aggregate[J]. Materials, 2020, 13(12):2865. [7] LIU J Z, YU B, WANG Q. Application of steel slag in cement treated aggregate base course[J]. Journal of Cleaner Production, 2020, 269:121733. [8] 赵德强, 张昺榴, 朱文尚, 等.道路基层复合胶凝材料的性能调控[J].建筑材料学报,2020,23(5):1137-1143. [9] XIAO F L, SHU I D, WEI Y F, et al. The mechanical properties of concrete incorporating steel slag as supplementary cementitious material[J]. Key Engineering Materials, 2021, 879:81-90. [10] QIANG W, YAN P Y, MI G D. Effect of blended steel slag-GBFS mineral admixture on hydration and strength ofcement[J]. Construction and Building Materials, 2012, 35:8-14. [11] KUMARA G, KAWAMOTO K. Steel slag and autoclaved aerated concrete grains as low-cost adsorbents to remove Cd2+ and Pb2+ in wastewater:effects of mixing proportions of grains and liquid-to-solid ratio[J]. Sustainability, 2021, 13(18):1-16. [12] MENG F, LIU Q, ZHU G, et al. Experimental study on application of steel slag magnetic tailings replacing part of sintering flux during sintering[J]. Journal of Central South University(Science and Technology), 2017, 48(1):31-38. [13] BAO G M, SONG M U, JIAN S, et al. Effect of phosphorus-fluorine-steel slag composite additive on cement clinker sintering[J]. Journal of the Chinese Ceramic Society, 2007,35(3):275-280. [14] GAO T M, DAI T, SHEN L, et al. Benefits of using steel slag in cement clinker production for environmental conservation and economic revenue generation[J]. Journal of Cleaner Production, 2020, 282:124538. [15] 常钧, 吴昊泽. 钢渣碳化机理研究[J]. 硅酸盐学报, 2010,28(7):1185-1191. [16] LUO Z T, WANG Y, YANG G J, et al. Effect of curing temperature on carbonation behavior of steel slag compacts[J]. Construction and Building Materials, 2021, 291:123369. [17] HUIJGEN W J J, COMANS R N J. Carbonation of steel slag for CO2 sequestration:leaching of products and reaction mechanisms[J]. Environmental Science & Technology, 2006, 40(8):2790-2796. [18] MARIA D R C, MARIA E P R, FRANCISCA P G, et al. Influence of steel slag type on concrete shrinkage[J]. Sustainability, 2020, 13(1):214. [19] WANG X J, WANG K, LI J W, et al. Heavy metals migration during the preparation and hydration of an eco-friendly steel slag-based cementitious material[J]. Journal of Cleaner Production,2021,329(20):129715. [20] 杨刚, 李辉, 陈华.钢渣微粉对重金属污染土壤的修复及机理研究[J].建筑材料学报,2021,24(2):318-322. [21] 鄢琪慧, 倪文, 高巍, 等. 矿渣-钢渣基胶凝材料固砷机理[J]. 中南大学学报(自然科学版), 2019, 50(7):1544-1550. [22] Netherlands Normalisation Institute Standard.EA NEN 7375-2004 Leaching characteristics of moulded or monolithic building and waste materials[S].2004. [23] 国家环境保护总局.HJ/T 299-2007固体废物浸出毒性浸出方法硫酸硝酸法[S].2007. [24] 中国钢铁工业协会.GB/T 20491-2017用于水泥和混凝土中的钢渣粉[S].2017. [25] 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991,12(4):12-19. [26] 齐立倩. 钢渣水泥复合胶凝材料水化机理和提高其力学性能的研究[D]. 北京:北京化工大学, 2015. [27] 王坤. 钢渣基硫铝铁系胶凝材料的制备及重金属迁移特性研究[D]. 济南:山东大学, 2021. [28] GOUGAR M L D, SCHEETZ B E, ROY D M, et al. Ettringite and C-S-H Portland cement phases for waste ion immobilization:a review[J]. Waste Management, 1996, 16(4):295-303. [29] LI X D, POON C S, SUN H, et al. Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials[J]. Journal of Hazardous Materials, 2001, 82(3):215-230. [30] QIAO X C, POON C S, CHEESEMAN C R. Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases[J]. Journal of Hazardous Materials, 2007, 139(2):238-243. [31] HALIN C E, AMAL R, BEYDOUN D, et al. Implications of the structure of cementitious wastes containing Pb(Ⅱ), Cd(Ⅱ), As(Ⅴ), and Cr(Ⅵ) on the leaching of metals[J]. Cement & Concrete Research, 2004, 34(7):1093-1102. [32] 郑旭涛, 张楠楠, 南姣, 等. 硅酸盐水泥对Cr离子的固化机理及其对铁矾渣的固化应用[J]. 有色金属材料与工程, 2016, 37(2):34-39. [33] SHEPHAN D, MALLMANN R, KNOFEL D, et al. High intakes of Cr, Ni, and Zn in clinker:part Ⅱ. Influence on the hydration properties[J]. Cement & Concrete Research, 1999,29(12):1959-1967. [34] 薛靖川, 黄启飞, 杨玉飞. 利用电子探针对水泥净浆中Cr、As、Pb分布特征的研究[J]. 环境科学学报, 2011, 31(4):798-804. [35] 包勇超. 钢渣粉末处理含量重金属废水实验[J]. 环境工程,2018,36(9):125-132. [36] LIU S Y, GAO J, QU B, et al. Adsorption behaviors of heavy metal ions by steel slag-an industrial solidwaste[C]//International Conference on Bioinformatics & Biomedical Engineering. IEEE, 2009. [37] 马少健, 刘剩余, 胡治流, 等.钢渣吸附剂对铬和铅重金属离子的吸附特性研究[J].有色矿冶, 2004, 20(4):3-57,59. [38] 王登权, 何伟, 王强, 等.重金属在水泥基材料中的固化和浸出研究进展[J].硅酸盐学报,46(5):683-693.
点击查看大图
计量
- 文章访问数: 152
- HTML全文浏览量: 18
- PDF下载量: 5
- 被引次数: 0