STUDY ON THE PROPERTIES OF C30 CONCRETE PREPARED BY MULTI-SOLID WASTE COUPLED CEMENT
-
摘要: 为实现工业固废的资源化利用,研究了以钢渣、水渣和脱硫石膏为原料制备的复合胶凝材料作为掺合料替代水泥制备C30混凝土。考察复合胶凝材料的掺入量对胶材标准稠度用水量、凝结时间、混凝土性能的影响。结果表明:净浆的标准稠度用水量和凝结时间与复合胶凝材料的掺入量呈正相关;所制备混凝土的抗压强度随着复合胶凝材料替代水泥量的增加而下降,全部使用胶凝材料制备混凝土试块的28 d抗压强度达到43.5 MPa,为水泥对照组的78.3%。钢渣微粉和脱硫石膏能够促进水渣水化生成钙钒石和水化硅酸钙等水化产物,起到良好的胶结作用,使得混凝土结构致密。该复合胶凝材料可替代部分水泥,减少CO2排放,带来巨大的经济效益和环境效益,具有广阔的市场应用前景。Abstract: In order to realize the resource utilization of industrial solid waste, the effect of composite cementitious materials prepared from steel slag, water slag and desulfurized gypsum as the admixtures, on the properties of paste and concrete was studied. The result showed that: The water requirement of normal consistency and setting time of the pure slurry were positively correlated with the amount of composite cementitious material; the compressive strength of the prepared concrete decreased as the amount of cement replaced by the composite cementitious material increased. The 28 d compressive strength of whole concrete blocks prepared with composite cementitious materials was 43.5 MPa, which was 78.3% of the cement control group. The research showed that steel slag powder and desulfurized gypsum could promote the hydration of water slag to form hydration products including calcium vanadium stone and calcium silicate hydrate, which played a good cementation role to make the concrete structure dense and obtain good performance. The partial substitution for cement of composite cementitious material would reduce CO2 emissions, bring economic and environmental benefits, and have broad market application prospects.
-
[1] 刘彬. 中国实现碳达峰和碳中和目标的基础、挑战和政策路径[J]. 价格月刊,2021(11):87-94. [2] 谭琦璐. 中国主要行业温室气体减排的共生效益分析[D]. 北京:清华大学, 2015. [3] 尚建丽, 郭涛. 低水泥高掺量钢渣碱激发混凝土的试验研究[J]. 非金属矿, 2015(1):38-41. [4] 饶磊. 转炉钢渣成分、结构及性能间内在规律及其应用研究[D]. 北京:北京科技大学, 2020. [5] 彭鹏飞, 王森, 王生炫,等. 钢渣胶凝材料化利用-复合矿渣研究[J]. 建材世界, 2019, 40(5):9-11. [6] 刘轩, 崔孝炜, 倪文,等. 钢渣粉对全固废混凝土强度的影响[J]. 金属矿山, 2016(10):189-192. [7] 徐东, 倪文, 汪群慧,等. 碱渣复合胶凝材料制备无熟料混凝土[J]. 哈尔滨工业大学学报, 2020, 52(8):151-160. [8] 李颖, 吴保华, 牟欣丽. 矿渣-钢渣-石膏体系早期水化反应中的协同作用[J]. 东北大学学报(自然科学版), 2020, 41(4):581-586. [9] 林添兴. 磨细大理石粉对混凝土力学性能影响研究[J]. 福建建材, 2022(12):5-7,10. [10] 马万斌. 钢渣微粉对水泥路用性能的影响研究[J]. 内蒙古公路与运输, 2021(3):7-9,26. [11] 梁晓杰, 常钧, 吴昊泽. 钢渣粉粒度对复合胶凝材料水化性能的影响[J]. 矿产综合利用, 2021(3):180-186. [12] 王戎. 钢渣粉对混凝土性能的影响[J]. 山东农业大学学报(自然科学版), 2019, 50(2):221-224. [13] 杨建伟. 钢渣和含钢渣的复合矿物掺合料对混凝土性能的影响[D]. 北京:清华大学, 2013. [14] 杜惠惠,倪文,高广军.水淬高钛高炉渣制备C40全固废混凝土试验研究[J]. 材料导报, 2020, 34(24):24055-24060. [15] CUI X W, NI W. Hydration behavior of cementitious materials with all solid waste based of steel slag and blast furnace slag[J]. Revista De La Facultad De Ingenieria, 2016, 31(7):172-181. [16] XIANG X D, XI J C, LI C H, et al. Preparation and application of the cement-free steel slag cementitious material[J]. Construction & Building Materials, 2016, 114:874-879. [17] LIU Y, ZHANG Z Q, HOU G H, et al. Preparation of sustainable and green cement-based composite binders with high-volume steel slag powder and ultrafine blast furnace slag powder[J]. Journal of Cleaner Production, 2020, 289:125133. [18] LIU Z Y, NI W, LI Y, et al. The mechanism of hydration reaction of granulated blast furnace slag-steel slag-refining slag-desulfurization gypsum-based clinker-free cementitious materials[J]. Journal of Building Engineering, 2021, 44:103289. [19] ZHANG J, LI S L, LI Z F. Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural networks[J]. Journal of Cleaner Production, 2020, 273(10):122972. [20] 邹敏, 沈玉, 刘娟红. 钢渣粉在水泥基材料中应用研究综述[J]. 硅酸盐通报,2021, 40(9):2964-2977.
点击查看大图
计量
- 文章访问数: 142
- HTML全文浏览量: 10
- PDF下载量: 5
- 被引次数: 0