中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4种草本植物对氯代有机磷酸酯阻燃剂污染土壤的修复能力研究

罗庆 吴中平 王聪聪 李瑜婕

罗庆, 吴中平, 王聪聪, 李瑜婕. 4种草本植物对氯代有机磷酸酯阻燃剂污染土壤的修复能力研究[J]. 环境工程, 2023, 41(3): 155-162. doi: 10.13205/j.hjgc.202303021
引用本文: 罗庆, 吴中平, 王聪聪, 李瑜婕. 4种草本植物对氯代有机磷酸酯阻燃剂污染土壤的修复能力研究[J]. 环境工程, 2023, 41(3): 155-162. doi: 10.13205/j.hjgc.202303021
LUO Qing, WU Zhongping, WANG Congcong, LI Yujie. REMEDIATION CAPABILITY OF FOUR HERBS ON CHLORINATED ORGANOPHOSPHATE FLAME RETARDANTS CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 155-162. doi: 10.13205/j.hjgc.202303021
Citation: LUO Qing, WU Zhongping, WANG Congcong, LI Yujie. REMEDIATION CAPABILITY OF FOUR HERBS ON CHLORINATED ORGANOPHOSPHATE FLAME RETARDANTS CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 155-162. doi: 10.13205/j.hjgc.202303021

4种草本植物对氯代有机磷酸酯阻燃剂污染土壤的修复能力研究

doi: 10.13205/j.hjgc.202303021
基金项目: 

国家自然科学基金项目(41807384)

沈阳市中青年科技创新人才支持计划(RC220128)

详细信息
    作者简介:

    罗庆(1984-),男,博士,教授,主要从事农田土壤污染阻控与修复研究。luoqingyt@126.com

    通讯作者:

    罗庆(1984-),男,博士,教授,主要从事农田土壤污染阻控与修复研究。luoqingyt@126.com

REMEDIATION CAPABILITY OF FOUR HERBS ON CHLORINATED ORGANOPHOSPHATE FLAME RETARDANTS CONTAMINATED SOIL

  • 摘要: 以4种常用的有机污染土壤修复植物高羊茅(Festuca arundinacea)、黑麦草(Lolium perenne L.)、苕子(Vicia villosa Roth var)和紫花苜蓿(Medicago sativa L.)为研究材料,通过盆栽试验考察了4种草本植物在磷酸三(1-氯-2-丙基)酯[tris-(1-chloro-2-propyl) phosphate, TCIPP]污染土壤胁迫下的耐受和富集特征,以期筛选出具有一定TCIPP污染土壤修复能力的植物。结果表明:TCIPP具有一定的植物毒性效应,能够抑制4种植物的生长发育,但仅黑麦草的生物量显著降低,其他3种植物的生物量减少不显著。TCIPP易于从植物根部向地上部迁移,其在4种植物组织中的浓度分布均表现为叶>根>茎。4种植物中,苕子叶组织中TCIPP的浓度为15.0 mg/kg,每盆土壤可积累TCIPP 34.9 mg。苕子和紫花苜蓿对土壤中TCIPP的吸收、积累和转运效率较高,其地上部富集系数分别为1.39和1.50,转运系数分别为2.61和3.24。4种植物对TCIPP污染土壤均有较好的修复能力,对土壤中TCIPP削减率为64.7%~91.6%,其中黑麦草根际对土壤中TCIPP的削减率最高,但植物对土壤中TCIPP的提取效率均低于2%,说明土壤中TCIPP的削减主要归因于根际微生物的降解作用。综合考虑各植物对土壤中TCIPP的耐受、富集和削减等因素,可优先考虑黑麦草作为TCIPP污染土壤的修复植物。
  • [1] STAPLETON H, SHARMA S, GETZINGER G, et al. Novel and high volume use flame retardants in US couches reflective of the 2005 pentaBDE phase out[J]. Environmental Science & Technology, 2012, 46(24):13432-13439.
    [2] LI T Y, BAO L J, WU C C, et al. Organophosphate flame retardants emitted from thermal treatment and open burning of e-waste[J]. Journal of Hazardous Materials, 2019, 367(4):390-396.
    [3] van DER VEEN I, de BOER J. Phosphorus flame retardants:properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119-1153.
    [4] BJORKLUND J, ISETUN S, NILSSON U. Selective determination of organophosphate flame retardants and plasticizers in indoor air by gas chromatography, positive-ion chemical ionization and collision-induces dissociation mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2004, 18(24):3079-3083.
    [5] DISHAW L, POWERS C, RYDE I, et al. Is the PentaBDE replacement, tris (1,3-dichloropropyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells[J]. Toxicology and Applied Pharmacology, 2011, 256(3):281-289.
    [6] NI Y, KUMAGAI K, YANAGISAWA Y. Measuring emissions of organophosphate flame retardants using a passive flux sampler[J]. Atmospheric Environment, 2007, 41(15):3235-3240.
    [7] FAN X, KUBWABO C, RASMUSSEN P, et al. Simultaneous determination of thirteen organophosphate esters in settled indoor house dust and a comparison between two sampling techniques[J]. Science of the Total Environment, 2014, 491/492:80-86.
    [8] LUO Q, SHAN Y, ADEEL M, et al. Levels, distribution, and sources of organophosphate flame retardants and plasticizers in urban soils of Shenyang, China[J]. Environmental Science and Pollution Research, 2018, 25(31):31752-33176.
    [9] LUO Q, GU L Y, WU Z P, et al. Distribution, source apportionment and ecological risks of organophosphate esters in surface sediments from the Liao river, northeast China[J]. Chemosphere, 2020, 250:126297.
    [10] WANG Y, YAO Y M, LI W H, et al. A nationwide survey of 19 organophosphate esters in soils from China:spatial distribution and hazard assessment[J]. Science of the Total Environment, 2019, 671:528-535.
    [11] LEE S, CHO H J, CHOI W, et al. Organophosphate flame retardants (OPFRs) in water and sediment:occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea[J]. Marine Pollution Bulletin, 2018, 130:105-112.
    [12] 吴星悦, 孙敦宇, 季秋忆, 等. 氯代有机磷酸酯阻燃剂的去除技术研究进展[J]. 环境化学, 2022, 41(3):1022-1034.
    [13] SU G Y, LETCHER R, YU H X. Organophosphate flame retardants and plasticizers in aqueous solution:pH-dependent hydrolysis, kinetics, and pathways[J]. Environmental Science & Technology, 2016, 50(15):8103-8111.
    [14] FANG Y D, KIM E, STRATHMANN T. Mineral and base-catalyzed hydrolysis of organophosphate flame retardants:potential major fate-controlling sink in soil and aquatic environments[J]. Environmental Science & Technology, 2018, 52(4):1997-2006.
    [15] NANCHARAIAH Y, REDDY G, MOHAN T, et al. Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms[J]. Journal of Hazardous Materials, 2015, 283:705-711.
    [16] XIONG J K, LI G X, AN T C. The microbial degradation of 2, 4, 6-tribromophenol (TBP) in water/sediments interface:investigating bioaugmentation using Bacillus sp. GZT[J]. Science of the Total Environment, 2017, 575:573-580.
    [17] WEI K, YIN H, PENG H, et al. Bioremediation of triphenyl phosphate in river water microcosms:proteome alteration of Brevibacillus brevis and cytotoxicity assessments[J]. Science of the Total Environment, 2019, 649:563-570.
    [18] HOU R, LUO X S, LIU C C, et al. Enhanced degradation of triphenyl phosphate (TPHP) in bioelectrochemical systems:kinetics, pathway and degradation mechanisms[J]. Environmental Pollution, 2019, 254:113040.
    [19] TAKAHASHI S, KAWASHIMA K, KAWASAKI M, et al. Enrichment and characterization of chlorinated organophosphate ester degrading mixed bacterial cultures[J]. Journal of Bioscience and Bioengineering, 2008, 106(1):27-32.
    [20] TAKAHASHI S, KATANUMA H, ABE K, et al. Identification of alkaline phosphatase genes for utilizing a flame retardant, tris (2-chloroethyl) phosphate, in Sphingobium sp strain TCM1[J]. Applied Microbiology and Biotechnology, 2017, 101(5):2153-2162.
    [21] HE H, JI Q Y, GAO Z Q, et al. Degradation of tri (2-chloroisopropyl) phosphate by the UV/H2O2 system:kinetics, mechanisms and toxicity evaluation[J]. Chemosphere, 2019, 236:124388.
    [22] YE J S, LIU J, LI C S, et al. Heterogeneous photocatalysis of tris (2-chloroethyl) phosphate by UV/TiO2:degradation products and impacts on bacterial proteome[J]. Water Research, 2017, 124:29-38.
    [23] HU H, ZHANG H X, CHEN Y, et al. Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate:effect of irradiation wavelength and real water matrixes[J]. Chemical Engineering Journal, 2019, 368:273-284.
    [24] OU H S, LIU J, YE J S, et al. Degradation of tris (2-chloroethyl) phosphate by ultraviolet-persulfate:kinetics, pathway and intermediate impact on proteome of Escherichia coli[J]. Chemical Engineering Journal, 2017, 308:386-395.
    [25] XU X X, CHEN J, QU R J, et al. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate:kinetics, water matrix effects, degradation products and reaction pathways[J]. Chemosphere, 2017, 185:833-843.
    [26] ANTONOPOULOU M, GIANNAKAS A, BAIRAMIS F, et al. Degradation of organophosphorus flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) by visible light N, S-codoped TiO2 photocatalysts[J]. Chemical Engineering Journal, 2017, 318:231-239.
    [27] 沈源源, 滕应, 骆永明, 等. 几种豆科、禾本科植物对多环芳烃复合污染土壤的修复[J]. 土壤, 2011, 43(2):253-257.
    [28] 涂晨, 滕应, 骆永明, 等.多氯联苯污染土壤的豆科-禾本科植物田间修复效应[J]. 环境科学, 2010, 31(12):3062-3066.
    [29] 何洋, 董志成, 刘林德, 等. 沉积物中多环芳烃的植物修复研究进展[J]. 环境工程, 2018, 36(2):168-172.
    [30] MA T T, TENG Y, LUO Y M, et al. Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site:a field study[J]. International Journal of Phytoremediation, 2013, 15(2), 154-167.
    [31] BURKEN J, SCHNOOR J. Predictive relationships for uptake of organic contaminants by hybrid poplar trees[J]. Environmental Science & Technology, 1998, 32(21):3379-3385.
    [32] LIU Q, WANG X L, YANG R Y, et al. Uptake kinetics, accumulation, and long-distance transport of organophosphate esters in plants:impacts of chemical and plant properties[J]. Environmental Science & Technology, 2019, 53(9):4940-4947.
    [33] LUO Q, LI Y J, WU Z P, et al. Phytotoxicity of tris-(1-chloro-2-propyl) phosphate in soil and its uptake and accumulation by pakchoi (Brassica chinensis L. cv. Suzhou)[J]. Chemosphere, 2021, 277:130347.
    [34] QIN P, LU S Y, LIU X H, et al. Removal of tri-(2-chloroisopropyl) phosphate (TCPP) by three types of constructed wetlands[J]. Science of the Total Environment, 2020, 749:141668.
    [35] HU B B, JIANG L F, ZHENG Q, et al. Uptake and translocation of organophosphate esters by plants:impacts of chemical structure, plant cultivar and copper[J]. Environment International, 2021, 155:106591.
    [36] LIU Q, LIU M L, WU S H, et al. Metabolomics reveals antioxidant stress responses of wheat (Triticum aestivum L.) exposed to chlorinated organophosphate esters[J]. Journal of Agricultural and Food Chemistry, 2020, 68(24):6520-6529.
    [37] WANG L, HUANG X L, LASERNA A, et al. Metabolomics reveals that tris(1,3-dichloro-2-propyl)phosphate (TDCPP) causes disruption of membrane lipids in microalga Scenedesmus obliquus[J]. Science of the Total Environment, 2020, 708:134498.
    [38] LIU S L, ALI S, YANG R J, et al. A newly discovered Cd-hyperaccumulator Lantana camara L[J]. Journal of Hazardous Materials, 2019, 371:233-242.
    [39] TRAPP S, EGGEN T. Simulation of the plant uptake of organophosphates and other emerging pollutants for greenhouse experiments and field conditions[J]. Environmental Science and Pollution Research, 2013, 20(6):4018-4029.
    [40] 陈迪, 李伯群, 杨永平, 等. 4种草本植物对镉的富集特征[J]. 环境科学, 2021, 42(2):960-966.
    [41] LIU H W, WANG H Y, ZHANG Y, et al. Comparison of heavy metal accumulation and cadmium phytoextraction rates among tenleadingtobacco (Nicotiana tabacum L.) cultivarsin China[J]. International Journal of Phytoremediation, 2019, 21(7):699-706.
    [42] WANG H, ZHAO Y M, ADEEL M, et al. Influence of celery on the remediation of PAHs contaminated farm soil[J]. Soil & Sediment Contamination, 2019, 28(2):200-212.
    [43] SCHNOOR J, LICHT L, MCCUTCHEON S, et al. Phytoremediation of organic and nutrient contaminants[J]. Environmental Science & Technology, 1995, 29(7):318-323.
    [44] CORGIE S, JONER E, LEYVAL C. Rhizospheric degradation of phenanthrene is a function of proximity to roots[J]. Plant and Soil, 2003, 257(1):143-150.
    [45] 许超, 夏北成. 运用多隔层根箱研究黑麦草根际微域中芘的降解[J]. 土壤学报, 2009, 46(3):426-433.
    [46] 杨静. PAHs污染土壤植物修复的根际效应及机制[D]. 杭州:浙江大学, 2012.
  • 加载中
计量
  • 文章访问数:  84
  • HTML全文浏览量:  17
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-21
  • 网络出版日期:  2023-05-26
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回