PREPARATION OF ADSORPTION MATERIAL FOR OIL-WATER SEPARATION FROM MODIFIED ABANDONED MASKS
-
摘要: 近年来,废弃口罩数量巨大,焚烧、填埋等处置方式存在资源浪费和潜在环境风险,寻求一种环保、经济、可行的处置方式成为迫切需要。采用氢氧化钠、正硅酸乙酯和十八烷基三氯硅烷对废弃口罩进行疏水改性,通过扫描电镜(SEM)、红外光谱分析仪(ATR-FTIR)、接触角测量等分析,结果表明改性后口罩表面形成完整、均匀的疏水包覆层,水接触角达到141.1°。改性后的口罩对润滑油、大豆油的吸附量分别达到28.52,26.84 g/g,且经10次吸油-解吸循环利用,吸油性能仍保持稳定。该研究为废弃口罩的资源化利用提供了一种新途径,具有较好的应用前景。Abstract: In recent years, a large number of abandoned masks cause resource waste and potential environmental risks in incineration and landfill. It is urgent to find an eco-friendly, economic and feasible disposal method for them. In the present work, hydrophobic modification of the abandoned masks with sodium hydroxide, TEOS and octadecyltrichlorosilane was conducted. Through scanning electron microscopy (SEM), infrared spectroscopy (ATR-FTIR) and contact angle measurement, it was found that a complete and uniform hydrophobic coating was formed on the surface of the modified masks, and the water contact angle reached 141.1°. The adsorption capacity of the modified masks for lubricating oil and soybean oil reached 28.52 g/g and 26.84 g/g, respectively. After 10 cycles of adsorption and desorption, the oil absorption performance remained stable. This study provides a new way for the resource utilization of waste masks and tells their good application prospect.
-
Key words:
- modified masks /
- hydrophobic modification /
- oil-water separation /
- adsorbing material
-
[1] 金水. 如何处理废弃口罩[J]. 防灾博览, 2021, 21(3):62-63. [2] 陈海明, 董侠, 赵莹, 等. 废弃一次性医用口罩的回收利用与化学升级再造[J].高分子学报, 2020, 51(12):1295-1306. [3] 肖志伟.医疗废物典型组分物理化学特性认识及其热解焚烧特性的基础研究.[D].杭州:浙江大学, 2010. [4] 尹进, 宋江南, 高琼. 精准防护:口罩的有效使用及处理[J].实用预防医学, 2020, 27(4):403-405. [5] 李佳宁. 美国南加州海岸发生重大石油泄漏事故[EB/OL]. http://m.news.cctv.com/2021/10/03/ARTICO4G9dUpNP0XGljiyoZn211003.shtml. 2021-10-03. [6] CHENG L, SHAIKH A R, FANG L F, et al. Fouling-resistant and self-cleaning aliphatic polyketone membrane for sustainable oil-water emulsion separation[J]. ACS Applied Materials & Interfaces, 2018, 10(51):44880-44889. [7] PRINCE R C. Oil spill dispersants:boon or bane?[J]. Environmental science & technology, 2015, 49(11):6376-6384. [8] BULLOCK R J, PERKINS R A, AGGARWAL S, et al. In-situ burning with chemical herders for Arctic oil spill response:Meta-analysis and review[J]. The Science of the Total Environment, 2019, 675:705-716. [9] ETKIN D S, NEDWED T J. Effectiveness of mechanical recovery for large offshore oil spills[J]. Marine Pollution Bulletin, 2020, 163(1):111848. [10] SOCOLOFSKY S A, GROS J, NORTH E, et al. The treatment of biodegradation in models of sub-surface oil spills:a review and sensitivity study[J]. Marine Pollution Bulletin, 2019, 143:204-219. [11] GUPTA S, TAI N H. Carbon materials as oil sorbents:a review on the synthesis and performance[J]. Journal of Materials Chemistry A, 2016, 4(5):1550-1565. [12] 丁舒, 王素芳, 林蓓, 等. 吸油材料的发展与研究进展[J].工业水处理, 2017, 37(7):10-14. [13] WEN Z L, WANG S H, BAO Z X. Preparation and oil absorption performance of polyacrylonitrile fiber oil absorption material[J]. Water, Air, & Soil Pollution, 2020, 231(4):1-13. [14] JIANG Y, HUANG X Y, YU R B. Foam or cotton covered by superhydrophobic micro-SiO2/fiberglass cloth for oil absorption[J]. Green Materials, 2020, 9(1):37-46. [15] LAH N K, ZAHID M N, FUAD M F, et al. Study of waste tyre granulates and polypropylene (PP) fibre as oil sorbent[J]. IOP Conference Series:Materials Science and Engineering, 2021, 1053(1):012004. [16] 王美琴, 唐泽彬, 竺柏康, 等.吸油毡在不同温度下吸油性能测试及其应用探究[J].广东化工, 2015, 42(9):55-56,46. [17] ZHAO J, YU K, HU Y N, et al. Discharge behavior of Mg-4wt%Ga-2wt%Hg alloy as anode for seawater activated battery[J]. Electrochimica Acta, 2011, 56(24):8224-8231. [18] KARAN C P, RENGASAMY R S, Das D. Oil spill cleanup by structured fibre assembly[J]. Indian Journal of Fibre and Textile Research, 2011, 36(2):190-200. [19] CHAUDHARY J P, VADODARIYA N, NATAEAJ S K, et al. Chitosan-Based aerogel membrane for robust oil-in-water emulsion separation[J]. ACS Applied Materials & Interfaces, 2015, 7(44):24957-54962. [20] YANG X, HE Y, ZENG G Y, et al. Bio-inspired method for preparation of multiwall carbon nanotubes decorated superhydrophilic ploy(vinylidene fluoride) membrane for oil/water emulsion separation[J]. Chemical Engineering Journal, 2017, 321:245-256. [21] LI T T, CEN X, REN H T, et al. Zeolitic imidazolate framework-8/polypropylene-polycarbonate barklike meltblown fibrous membranes by a facile in situ growth method for efficient PM2.5 capture[J]. ACS Applied Materials & Interfaces, 2020, 12(7):8730-8739. [22] HSIEH C T, CHEN W Y, WU F L, et al. Superhydrophobicity of a three-tier roughened texture of microscale carbon fabrics decorated with silica spheres and carbon nanotubes[J]. Diamond & Related Materials, 2009, 19(1):26-30. [23] EKATERINA V, MIRNA E, ABEL M. Colloidal aggregation phenomena:spatial structuring of TEOS-derived silica aerogels[J]. Journal of Colloid And Interface Science, 2006, 298(1):209-212. [24] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95:65-87. [25] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8):988-994. [26] WENZEL R N. Surface roughness and contact angle[J]. The Journal of Physical and Colloid Chemistry, 1949, 53(9):1466-1467. [27] CASSIE A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40:546-551. [28] CASSIE A B D. Contact angles[J]. Discussions of the Faraday Society, 1948, 3:11-16.
点击查看大图
计量
- 文章访问数: 121
- HTML全文浏览量: 15
- PDF下载量: 6
- 被引次数: 0