DEVELOPMENT AND APPLICATION OF AN IN-SITU PERMEATION TUBE PRETREATMENT DEVICE FOR GAS MONITORING
-
摘要: 针对现有工业过程气体在线测量预处理方式存在的系统复杂、维护量大、测量延时等问题,基于微孔陶瓷物理特性及空气动力学原理研制了原位渗透管式预处理装置。该预处理装置主要包括光学端和渗透管腔体,当待测气体流经渗透管时,由于绕流作用在来流方向壁面前后形成压差,在压差作用下,气体经过渗透管过滤后进入管内进行激光测量。首先采用CFD数值模拟方法对气体管道和微孔陶瓷渗透管耦合流域进行了流场模拟,发现在单一变量条件下,气体更新速率随着流速和内径的增大而提升,随着外径的增大而降低;然后搭建实验装置进行了实验验证,与流场模拟结果一致;最后进行了原位渗透管式预处理装置研制及现场应用,并采用便携式分析仪进行了对比,发现二者误差<2%。与现有预处理装置相比,渗透管腔体安装于管道内,测量环境与管道工况一致,且取样路径短,可以实现工业过程气体高保真快速在线监测。Abstract: Aiming at the problems such as complex system, large maintenance and measurement delay in the pretreatment of gas on-line monitoring in industrial process, the in-situ permeation tube pretreatment device is developed based on the physical characteristics of microporous ceramics and aerodynamics principle. The pretreatment device mainly includes two laser emitters and a permeation tube cavity. When the gas flows through the permeation tube, the pressure drop will be formed before and after the wall of the incoming direction, due to the action of flow around. Under the pressure drop, the gas will be filtered through the permeation tube and then enter the tube to be measured by laser. Firstly, the coupling field of pipe and permeation tube are simulated by CFD numerical simulation, and it is shown that under the condition of single variable, the gas renewal rate increases with the increase of flow rate and inner diameter, and decreases with the increase of outer diameter. Then the experimental device is set up for experimental verification, and the result is consistent with the flow field simulation. On this basis, the in-situ permeation tube pretreatment device is developed and applied in the field, and the portable analyzer is used for comparison which show the error between them is less than 2%. Compared with the existing pretreatment devices, the permeation tube cavity is installed in the pipe, the measurement environment is consistent with the working condition, and the sampling path is short, which can realize high fidelity and fast on-line monitoring of industrial process gas.
-
Key words:
- industrial gases /
- pretreatment /
- in-situ permeation /
- microporous ceramic /
- numerical simulation
-
[1] 王一坤,雷小苗,邓磊,等.可燃废气利用技术研究进展(Ⅰ):高炉煤气、转炉煤气和焦炉煤气[J].热力发电,2014,43(7):1-9,14. [2] 钱虹,张超凡,柴婷婷.基于随机森林的SCR脱硝系统出口NO</em>x浓度预测研究[J].热能动力工程,2021,36(3):122-129,137. [3] 谭传玉.火电厂氮氧化物排放测量研究[D].北京:华北电力大学,2019. [4] 屈加豹,王鹏,伯鑫,等.超低改造下中国火电排放清单及分布特征[J].环境科学,2020,41(9):3969-3975. [5] 朱法华,王圣,孙雪丽,等.氮氧化物控制技术在电力行业中的应用[J].中国电力,2011,44(12):55-59. [6] 宋景慧,李兵臣,李德波,等.不同燃尽风风量对炉内燃烧影响的数值模拟[J].动力工程学报,2014,34(3):176-181. [7] 刘同干,刘晓东,何利军,等.1000 MW超超临界单炉膛双切圆锅炉水冷壁贴壁气氛影响因素[J].洁净煤技术,2021,27(6):100-107. [8] 王顶辉. 煤粉锅炉燃烧特性及降低氮氧化物生成的技术研究[D].保定:华北电力大学,2014. [9] 陈是楠. 600 MW切圆锅炉燃烧器布置方式优化及其硫化氢生成特性研究[D].北京:北京交通大学,2016. [10] 聂伟,阚瑞峰,杨晨光,等.可调谐二极管激光吸收光谱技术的应用研究进展[J].中国激光,2018,45(9):9-29. [11] 徐文哲.热湿法CEMS与传统直接抽取CEMS系统的比较[J].科技创新与应用,2013(35):122. [12] 李家荣.基于S12单片机的高炉煤气CO含量激光检测系统[D].武汉:武汉科技大学,2011. [13] 张弛.烟气连续监测系统关键技术的研究[D].天津:天津大学,2012. [14] 党敬民.基于QCL的红外一氧化碳检测系统研究[D].长春:吉林大学,2016. [15] ZHENG D, PENG Z M,DING Y J, et al. Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing[J].Chinese Physics B,2021, 30(4):330-341. [16] 周佩丽,谭文,彭志敏,等.基于WM-DAS的原位取样式烟气中CO在线监测[J].动力工程学报,2020,40(8):629-634. [17] 王振,杜艳君,丁艳军,等.波长调制-直接吸收方法在线监测大气中CH4和CO2浓度[J].物理学报,2020,69(6):97-104. [18] 张镇.微孔陶瓷滤管的过滤性能及应用研究[D].长沙:长沙理工大学,2016. [19] GOODARZ A, SMITH D H. Analysis of steady-state filtration and back pulse process in a hot-gas filter vessel[J]. Aerosol Science and Technology,2002,36(6):665-677. [20] SONG X Y, JIAN B H, JIN J. Preparation of porous ceramic membrane for gas-solid separation[J]. Ceramics International,2018,44(16):20361-20366.
点击查看大图
计量
- 文章访问数: 82
- HTML全文浏览量: 5
- PDF下载量: 5
- 被引次数: 0