LIFE CYCLE ASSESSMENT OF COORDINATED TREATMENT OF WASTE GAS POLLUTION AND CARBON REDUCTION IN ANAEROBIC POND IN A PHARMACEUTICAL FACTORY
-
摘要: 针对制药企业污水站厌氧池中的温室气体甲烷和恶臭气体,在原有水吸收-光催化-化学吸收治理工艺的基础上,改造形成水吸收-碱吸收-蓄热式焚烧(RTO)-急冷-碱吸收为主的温室气体削减协同恶臭处理新工艺。利用生命周期评价法,对废气治理工艺的环境影响进行特征化、标准化分析。结果表明,改造前、后废气治理工艺的主要环境影响均为全球变暖。通过温室气体削减量核算和经济性评估可知,工艺改造后,总温室效应潜值年削减量可达到7.53×106 kg CO2-eq,运行成本节约1.21×106元。新工艺在实现减污降碳的同时,具有显著的经济和社会效益。Abstract: In response to the environmental protection goal of "reducing pollution and carbon, collaborative governance, improving", a new process of equivalent greenhouse gas and malodorous gas treatment based on the original "water absorption-photocatalysis-chemical absorption" treatment process had been transformed into a "water absorption-alkali absorption-regenerative incineration (RTO)-quench-alkali absorption," which aimed at greenhouse gas methane and malodorous gas of the anaerobic tank in the sewage station of the pharmaceutical industry. Life cycle assessment (LCA) was used to implement characteristic and standardized analysis of the environmental impact of the waste gas treatment process. The results showed that the significant environmental impact of the original and new waste gas treatment process was global warming. Through the greenhouse gas reduction calculation and economic evaluation, compared with the original process, the new process could reach the annual greenhouse effect reduction value of 7.53×106 kg CO2-eq and an economic benefit of RMB 1.21×106. The new process provided a theoretical basis for comprehensively developing the pharmaceutical industry’s environmental, technological, economic, and social benefits while achieving efficient waste gas treatment.
-
[1] CHEN H, QI S Z, TAN X J. Decomposition and prediction of China's carbon emission intensity towards carbon neutrality:from perspectives of national, regional and sectoral level[J]. Science of the Total Environment, 2022,825:153839. [2] 郭斌, 宋玉, 律国黎, 等. 制药企业密集区空气中VOCs污染特性及健康风险评价[J]. 环境化学, 2014,33(8):1354-1360. [3] GUI C W, LI G X, ZHU R S, et al. Capturing VOCs in the pharmaceutical industry with ionic liquids[J]. Chemical Engineering Science, 2022,252:117504. [4] 窦红, 姜建彪, 刘翠棉, 等. 发酵类制药企业污水处理厂废气中VOCs及厂界恶臭物质特征分析[J]. 河北工业科技, 2019,36(3):215-220. [5] 赵秀梅. 化学原料药行业挥发性有机废气污染特征与治理中的主要问题及建议[J]. 环境工程学报, 2020,14(9):2277-2283. [6] JACKSON R B, SOLOMON E I, CANADELL J G, et al. Methane removal and atmospheric restoration[J]. Nature Sustainability, 2019,2(6):436-438. [7] 刘宇彤. 我国工业VOCs集中处理生命周期评价及技术经济研究[D]. 长春:吉林大学, 2020. [8] 沈兰. 造纸废水治理工艺的生命周期分析[D]. 苏州:苏州科技学院, 2010. [9] HSIEN C, LOW J, FUCHEN S C, et al. Life cycle assessment of water supply in Singapore:a water-scarce urban city with multiple water sources[J]. Resources, Conservation and Recycling, 2019,151:104476. [10] SINGH V, PHULERIA H C, CHANDEL M K. Estimation of energy recovery potential of sewage sludge in India:waste to watt approach[J]. Journal of Cleaner Production, 2020,276(2/3):122538. [11] 王婷, 朱晓禹, 董斌, 等. 制药行业废水改造工程实例[J]. 给水排水, 2022,48(1):83-85. [12] 韩进光, 郑承军, 王毅. 西安市北石桥污水处理工程生命周期评价研究[J]. 给水排水, 2009,35(增刊1):214-217. [13] 钱大益, 张梦然, 苏伟. 脱硫灰处理生命周期环境影响评价[J]. 环境工程学报, 2021,15(5):1716-1723. [14] 张杉雪, 张文龙, 熊维, 等. 典型海水淡化工艺的生命周期评价[J]. 环境工程, 2019,37(3):168-173. [15] 罗小勇, 黄希望, 王大伟, 等. 生命周期评价理论及其在污水处理领域的应用综述[J]. 环境工程, 2013,31(4):118-122. [16] 李文杰. 化学制药企业废水处理工程实例[J]. 环境工程技术学报, 2020,10(4):606-612. [17] ZHOU J K, YIN T, TIAN J. Research on the impact of Beijing-Tianjin-Hebei electric power and thermal power industry on haze pollution[J]. Energy Reports, 2022,8:1698-1710. [18] SOLOMON, SUSAN. Progress towards a quantitative understanding of Antarctic ozone depletion[J]. Nature, 1990,347(6291):347-354. [19] 吉倩倩. 生命周期评价在城市污水处理的环境效益分析中的应用[D]. 西安:西安建筑科技大学, 2010. [20] XU M M, TAN R P. How to reduce CO2 emissions in pharmaceutical industry of China:evidence from total-factor carbon emissions performance[J]. Journal of Cleaner Production, 2022,337:130505. [21] DONG Z Y Z, XIA C Y, FANG K, et al. Effect of the carbon emissions trading policy on the co-benefits of carbon emissions reduction and air pollution control[J]. Energy Policy, 2022,165:112998. 期刊类型引用(18)
1. 郑立龙,张德程,郝连成,代友旭,张健康,李先锋,任开文,刘建,孔凡全,王勇峰. 广东雷州东部土壤重金属分布特征、来源分析及健康风险评价. 中国地质. 2025(01): 300-314 . 百度学术
2. 王胜蓝,蒋月,马杰,王俭,刘萍,邓力,孙静,龚玲. 基于蒙特卡罗模拟的危险废物处置场地下水重金属健康风险评估. 有色金属(冶炼部分). 2024(01): 143-153 . 百度学术
3. 马海珍,张振师,李权,许林,戈洋,杨贞. 某化工厂土壤与地下水Cr~(6+)污染分布及健康风险. 西北地质. 2024(01): 73-82 . 百度学术
4. 周礼洋. 典型有机化工厂污染地块氯代烃分布特征及基于蒙特卡洛模拟的风险评估. 环境工程技术学报. 2024(01): 98-111 . 百度学术
5. 李雨晨,郑刘根,陈星,陈永春,安士凯,安燕飞,李兵. 基于PMF模型的矿区土壤重金属来源解析. 环境监测管理与技术. 2024(01): 17-22 . 百度学术
6. 张栋,李永春,苏日力格,袁国礼,邰苏日嘎拉,王永亮,陈国栋,周文辉,杜雨春子,杨建雨. 内蒙古五原县某地土壤重金属生态健康风险评价. 中国地质. 2024(01): 248-263 . 百度学术
7. 袁帅,张思源,张雪琼,袁国礼,王永亮,边鹏,邰苏日嘎拉. 内蒙古乌拉特前旗大佘太地区农田表层土壤重金属生态安全风险评价. 中国地质. 2024(05): 1686-1700 . 百度学术
8. 王红梅,吴健芳,田自强,李宇婷,龚斌. 土壤污染物健康风险评价技术现状及发展趋势. 环境工程技术学报. 2023(02): 778-784 . 百度学术
9. 马杰,孙静,蒋月,陈召沪,刘萍. 某铅锌尾矿库周边土壤和底泥重金属铊污染特征及健康风险评估. 有色金属(冶炼部分). 2023(04): 140-147 . 百度学术
10. 郑煜,罗杨,吴永贵,彭小裕,伍建业,彭子乐,罗鉴. 肠道微生物对蔬菜中铬生物可给性的影响及人体健康风险评价. 环境化学. 2023(04): 1097-1108 . 百度学术
11. 郭志娟,刘飞,周亚龙,王乔林,王成文. 雄安新区土壤氟地球化学特征及健康风险评价. 环境科学. 2023(08): 4397-4405 . 百度学术
12. 马杰,佘泽蕾,王胜蓝,邓力,孙静,刘萍,徐敏. 重庆市煤矸山周边农产品镉健康风险评价及土壤环境基准值推导. 环境科学. 2023(09): 5264-5274 . 百度学术
13. 马杰,佘泽蕾,王胜蓝,邓力,刘萍,孙静. 基于蒙特卡罗模拟的煤矸山周边农用地土壤重金属健康风险评估. 环境科学. 2023(10): 5666-5678 . 百度学术
14. 程全国,王浩东,李晔,高悦. 基于蒙特卡罗模拟的辽宁省某化工园区及周边地下水PAHs健康风险评价. 沈阳大学学报(自然科学版). 2022(03): 175-182 . 百度学术
15. 栗钰洁,王贝贝,曹素珍,高菲,张力文,段小丽. 基于PMF的土壤多环芳烃致癌风险定量源解析方法研究:以太原市为例. 环境科学研究. 2022(08): 1996-2005 . 百度学术
16. 石文静,周翰鹏,孙涛,黄金涛,杨文焕,李卫平. 矿区周边土壤重金属污染优先控制因子及健康风险评价研究. 生态环境学报. 2022(08): 1616-1628 . 百度学术
17. 张怡萍,王哲,张振龙,罗莹,曾秋平,贾文静,王振雨,张家千,冯喜杨,黄凤羽,易发成. 基于蒙特卡洛模拟的土壤健康风险评价——以攀枝花某矿区小流域为例. 化工矿物与加工. 2022(12): 30-36+45 . 百度学术
18. 徐文,朱士江,纪道斌,丁致玉,李虎,于颖,李凯凯. 基于Copula函数的区域氮代谢环境风险评价与分析:以北京市密云区为例. 环境科学与技术. 2022(12): 154-163 . 百度学术
其他类型引用(9)
-

计量
- 文章访问数: 174
- HTML全文浏览量: 23
- PDF下载量: 5
- 被引次数: 27