RECENT ADVANCES IN MATHEMATICAL MODELS FOR MEMBRANE-AERATED BIOFILM REACTOR
-
摘要: 污(废)水处理与资源化是控制水体污染、缓解水资源短缺的重要手段。高效的污水处理工艺是实现污水处理与资源化的关键。膜曝气生物膜反应器(membrane-aerated biofilm reactor, MABR)是一种集膜技术和生物膜技术于一体的新型污水处理技术,具有氧传质效率高、同步除碳脱氮等优势,因此在污(废)水处理领域得到广泛研究与应用。MABR数学模型是依托于数理逻辑方法的系统定量描述,对于深入解析MABR系统运行机理、优化工艺参数具有重要意义。通过回顾MABR数学模型的发展历程,从底层逻辑出发归纳概括了MABR数学模型涉及的主要过程(包括MABR传质过程模型和MABR反应过程模型);分析了MABR模型研究中的关键影响参数;总结了现有MABR模型研究中存在的问题,并对今后MABR数学模型的研究方向进行了展望。Abstract: Wastewater treatment and reclamation are of great importance for controlling water pollution and alleviating water shortages, which requires efficient treating technologies as the backbone. Membrane-aerated biofilm reactor (MABR) is a novel wastewater treatment technology integrating membrane technology and biofilm technology, which has shown great potential in high-efficiency oxygen mass transfer, as well as the simultaneous removal of organic pollutants and nitrogen contaminants. Therefore, it has been widely studied and applied in wastewater treatment. The mathematical model for MABR is a quantitative description of the system based on mathematical logic language, and is of great significance for in-depth analysis of the essential mechanism and optimization of operating parameters. By reviewing the development history of the MABR mathematical model, two main processes involved in the MABR mathematical model were summarized from the fundamental logic, including the mass transfer model and the reaction model. Furthermore, the key parameters in MABR mathematical model were analyzed based on sensitivity analysis results. The existing problems of MABR model research and the future development trend of the MABR mathematical model, both theoretically and practically were also discussed in the end.
-
[1] CASEY E, GLENNON B, HAMER G. Review of membrane aerated biofilm reactors[J]. Resources, Conservation and Recycling, 1999, 27(1):203-215. [2] TIAN H L, LIU J, FENG T T, et al. Assessing the performance and microbial structure of biofilms adhering on aerated membranes for domestic saline sewage treatment[J]. RSC Advances, 2017, 7(44):27198-27205. [3] TIAN H L, YAN Y C, CHEN Y W, et al. Process performance and bacterial community structure under increasing influent disturbances in a membrane-aerated biofilm reactor[J]. J. Microbiol. Biotechnol., 2016, 26(2):373-384. [4] LIU R K, WANG Q, LI M, et al. Advanced treatment of coal chemical reverse osmosis concentrate with three-stage MABR[J]. RSC Advances, 2020,10(17):10178-10187. [5] POTVIN C M, LONG Z, ZHOU H. Removal of tetrabromobisphenol A by conventional activated sludge, submerged membrane and membrane aerated biofilm reactors[J]. Chemosphere, 2012, 89(10):1183-1188. [6] MEI X, GUO Z W, LIU J, et al. Treatment of formaldehyde wastewater by a membrane-aerated biofilm reactor (MABR):the degradation of formaldehyde in the presence of the cosubstrate methanol[J]. Chemical Engineering Journal, 2019, 372:673-683. [7] MEI X, LIU J, GUO Z W, et al. Simultaneous p-nitrophenol and nitrogen removal in PNP wastewater treatment:comparison of two integrated membrane-aerated bioreactor systems[J]. Journal of Hazardous Materials, 2019, 363:99-108. [8] LI T G, LIU J X, BAI R B, et al. Membrane-aerated biofilm reactor for the treatment of acetonitrile wastewater[J]. Environmental Science & Technology, 2008, 42(6):2099-2104. [9] LI M, LI P, DU C Y, et al. Pilot-scale study of an integrated membrane-aerated biofilm reactor system on urban river remediation[J]. Industrial & Engineering Chemistry Research, 2016, 55(30):8373-8382. [10] 李浩, 李鹏, 李波, 等. MABR用于城市景观河道水体修复的研究[J]. 膜科学与技术, 2016, 36(6):101-107,118. [11] HE H Q, WAGNER B M, CARLSON A L, et al. Recent progress using membrane aerated biofilm reactors for wastewater treatment[J]. Water Science and Technology, 2021, 81(9):2131-2157. [12] YASUDA H, LAMAZE C E. Transfer of gas to dissolved oxygen in water via porous and nonporous polymer membranes[J]. Journal of Applied Polymer Science, 1972, 16(3):595-601. [13] CÔTÉ P, BERSILLON J L, HUYARD A. Bubble-free aeration using membranes:mass transfer analysis[J]. Journal of Membrane Science, 1989, 47(1):91-106. [14] WANNER O, GUJER W. A multispecies biofilm model[J]. Biotechnology and Bioengineering, 1986, 28(3):314-328. [15] DEBUS O, WANNER O. Degradation of xylene by a biofilm growing on a gas-permeable membrane[J]. Water Science and Technology, 1992, 26(3/4):607-616. [16] 蔡庆. 生物膜数学模型研究进展[J]. 广州化工, 2015, 43(6):4-6. [17] HENZE M, GUJER W, MINO T, et al. Activated sludge models ASM1, ASM2, ASM2D, ASM3[J]. Water Intelligence Online, 2000, 5[2022-07-12]. [18] MATSON J V, CHARACKLIS W G. Diffusion into microbial aggregates[J]. Water Research, 1976, 10(10):877-885. [19] KARTOHARDJONO S, CHEN V. Mass transfer and fluid hydrodynamics in sealed end hydrophobic hollow fiber membrane gas-liquid contactors[J]. Journal of Applied Membrane Science & Technology, 2017, 2(1):1-12. [20] FAN L S, LEYVA-RAMOS R, WISECARVER K D, et al. Diffusion of phenol through a biofilm grown on activated carbon particles in a draft-tube three-phase fluidized-bed bioreactor[J]. Biotechnology and Bioengineering, 1990, 35(3):279-286. [21] YANG M C, CUSSLER E L. Designing hollow-fiber contactors[J]. AIChE Journal, 1986, 32(11):1910-1916. [22] WICKRAMASINGHE S R, SEMMENS M J, CUSSLER E L. Mass transfer in various hollow fiber geometries[J]. Journal of Membrane Science, 1992, 69(3):235-250. [23] CUSSLER E L. Hollow fiber modules made with hollow fiber fabric[J]. Journal of Membrane Science, 1993,84(1/2):1-14. [24] ZHENG J M, DAI Z W, WONG F S, et al. Shell side mass transfer in a transverse flow hollow fiber membrane contactor[J]. Journal of Membrane Science, 2005, 261(1):114-120. [25] SHEN S, KENTISH S E, STEVENS G W. Shell-side mass-transfer performance in hollow-fiber membrane contactors[J]. Solvent Extraction and Ion Exchange, 2010[2022-06-23]. [26] PELLICER-NÀCHER C, DOMINGO-FÉLEZ C, LACKNER S, et al. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors[J]. Journal of Membrane Science, 2013, 446:465-471. [27] KAREL S F, LIBICKI S B, ROBERTSON C R. The immobilization of whole cells:engineering principles[J]. Chemical Engineering Science, 1985, 40(8):1321-1354. [28] LIBICKI S B, SALMON P M, ROBERTSON C R. The effective diffusive permeability of a nonreacting solute in microbial cell aggregates[J]. Biotechnology and Bioengineering, 1988, 32(1):68-85. [29] SAN H A, TANIK A, ORHON D. Micro-scale modelling of substrate removal kinetics in multicomponent fixed-film systems[J]. Journal of Chemical Technology & Biotechnology, 1993, 58(1):39-48. [30] de BEER D, STOODLEY P. Relation between the structure of an aerobic biofilm and transport phenomena[J]. Water Science and Technology, 1995, 32(8):11-18. [31] BISHOP P L, ZHANG T C, FU Y C. Effects of biofilm structure, microbial distributions and mass transport on biodegradation processes[J]. Water Science and Technology, 1995, 31(1):143-152. [32] WILLIAMSON K, MCCARTY P L. A model of substrate utilization by bacterial films[J]. Journal-Water Pollution Control Federation, 1976, 48(1):9-24. [33] CUNNINGHAM A B, VISSER E, LEWANDOWSKI Z, et al. Evaluation of a coupled mass transport-biofilm process modelusing dissolved oxygenmicrosensors[J]. Water Science and Technology, 1995, 32(8):107-114. [34] BENEFIELD L, MOLZ F. Mathematical simulation of a biofilm process[J]. Biotechnology and Bioengineering, 1985, 27(7):921-931. [35] ZHANG S F, SPLENDIANI A, DOS SANTOS L M F, et al. Determination of pollutant diffusion coefficients in naturally formed biofilms using a single tube extractive membrane bioreactor[J]. Biotechnology and Bioengineering, 1998, 59(1):80-89. [36] CASEY E, GLENNON B, HAMER G. Biofilm development in a membrane-aerated biofilm reactor:effect of intra-membrane oxygen pressure on performance[J]. Bioprocess Engineering, 2000, 23(5):457-465. [37] KAREL S F, ROBERTSON C R. Reaction rate calculations for cosubstrates diffusing into catalyst layer from opposite sides[J]. Biotechnology and Bioengineering, 1987, 30(3):427-438. [38] CASEY E, GLENNON B, HAMER G. Oxygen mass transfer characteristics in a membrane-aerated biofilm reactor[J]. Biotechnology and Bioengineering, 1999, 62(2):183-192. [39] GONZÁLEZ-BRAMBILA M M, LOPEZ-ISUNZA F. Modelling of the transient behaviour of a membrane-attached biofilm reactor under successive pulses of a synthetic wastewater substrate[J]. International Journal of Chemical Reactor Engineering, 2008, 6(1):1-28. [40] RISHELL S, CASEY E, GLENNON B, et al. Characteristics of a methanotrophic culture in a membrane-aerated biofilm reactor[J]. Biotechnology Progress, 2004, 20(4):1082-1090. [41] LIU Y R, ZHU T T, REN S Q, et al. Contribution of nitrification and denitrification to nitrous oxide turnovers in membrane-aerated biofilm reactors (MABR):a model-based evaluation[J]. Science of The Total Environment, 2022, 806:151321. [42] WU J, ZHANG Y. Evaluation of the impact of organic material on the anaerobic methane and ammonium removal in a membrane aerated biofilm reactor (MABR) based on the multispecies biofilm modeling[J]. Environmental Science and Pollution Research, 2017, 24(2):1677-1685. [43] SYRON E, SEMMENS M J, CASEY E. Performance analysis of a pilot-scale membrane aerated biofilm reactor for the treatment of landfill leachate[J]. Chemical Engineering Journal, 2015, 273:120-129. [44] LACKNER S, SMETS B F. Effect of the kinetics of ammonium and nitrite oxidation on nitritation success or failure for different biofilm reactor geometries[J]. Biochemical Engineering Journal, 2012, 69:123-129. [45] NI B J, YUAN Z. A model-based assessment of nitric oxide and nitrous oxide production in membrane-aerated autotrophic nitrogen removal biofilm systems[J]. Journal of Membrane Science, 2013, 428:163-171. [46] LACKNER S, TERADA A, HORN H, et al. Nitritation performance in membrane-aerated biofilm reactors differs from conventional biofilm systems[J]. Water Research, 2010, 44(20):6073-6084. [47] COLE A C, SHANAHAN J W, SEMMENS M J, et al. Preliminary studies on the microbial community structure of membrane-aerated biofilms treating municipal wastewater[J]. Desalination, 2002, 146(1):421-426. [48] ZHANG T C, BISHOP P L. Density, porosity, and pore structure of biofilms[J]. Water Research, 1994, 28(11):2267-2277. [49] CHEN X M, YANG L Y, SUN J, et al. Influences of longitudinal heterogeneity on nitrous oxide production from membrane-aerated biofilm reactor:a modeling perspective[J]. Environmental Science & Technology, 2020, 54(17):10964-10973. [50] HORN H, HEMPEL D C. Substrate utilization and mass transfer in an autotrophic biofilm system:experimental results and numerical simulation[J]. Biotechnology and Bioengineering, 1997, 53(4):363-371. [51] WAGNER B M, DAIGGER G T, LOVE N G. Assessing membrane aerated biofilm reactor configurations in mainstream anammox applications[J]. Water Science and Technology, 2022, 85(3):943-960. [52] HIBIYA K, TERADA A, TSUNEDA S, et al. Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor[J]. Journal of Biotechnology, 2003, 100(1):23-32. [53] MARTIN K J, NERENBERG R. The membrane biofilm reactor (MBfR) for water and wastewater treatment:principles, applications, and recent developments[J]. Bioresource Technology, 2012, 122:83-94. [54] ACEVEDO A V, LACKNER S. Membrane aerated biofilm reactors-how longitudinal gradients influence nitrogen removal:a conceptual study[J]. Water Research, 2019, 166:115060. [55] PICIOREANU C, van LOOSDRECHT M C M, HEIJNEN J J. A new combined differential-discrete cellular automaton approach for biofilm modeling:application for growth in gel beads[J]. Biotechnology and Bioengineering, 1998, 57(6):718-731. [56] BELL A, AOI Y, TERADA A, et al. Comparison of spatial organization in top-down- and membrane-aerated biofilms:a numerical study[J]. Water Science and Technology, 2005, 52(7):173-180. [57] SHANAHAN J W, SEMMENS M J. Alkalinity and pH effects on nitrification in a membrane aerated bioreactor:an experimental and model analysis[J]. Water Research, 2015, 74:10-22. [58] VAFAJOO L, PAZOKI M. Model-based evaluations of operating parameters on CANON process in a membrane-aerated biofilm reactor[J]. Desalination and Water Treatment, 2013, 51(19/20/21):4228-4234. [59] TIMBERLAKE D L, STRAND S E, WILLIAMSON K J. Combined aerobic heterotrophic oxidation, nitrification and denitrification in a permeable-support biofilm[J]. Water Research, 1988, 22(12):1513-1517. [60] BUNSE P, ORSCHLER L, AGRAWAL S, et al. Membrane aerated biofilm reactors for mainstream partial nitritation/anammox:experiences using real municipal wastewater[J]. Water Research, 2020, 9:100066. [61] SUN J, DAI X H, LIU Y W, et al. Sulfide removal and sulfur production in a membrane aerated biofilm reactor:model evaluation[J]. Chemical Engineering Journal, 2017, 309:454-462. [62] JIANG X Y, XU B, WU J. Sulfur recovery in the sulfide-oxidizing membrane aerated biofilm reactor:experimental investigation and model simulation[J]. Environmental Technology, 2019, 40(12):1557-1567. [63] 侯霙, 王暄, 吕晓龙, 等. 疏水性中空纤维微孔膜无泡曝气试验研究[J]. 中国给水排水, 2011, 27(13):100-102. [64] PÉREZ-CALLEJA P, CLEMENTS E, NERENBERG R. Enhancing ammonium oxidation fluxes and nitritation efficiencies in MABRs:a modeling study[J]. Environmental Science:Water Research & Technology, 2022, 8(2):358-374. [65] TERADA A, LACKNER S, TSUNEDA S, et al. Redox-stratification controlled biofilm (ReSCoBi) for completely autotrophic nitrogen removal:the effect of co-versus counter-diffusion on reactor performance[J]. Biotechnology and Bioengineering, 2007, 97(1):40-51. [66] MATSUMOTO S, TERADA A, TSUNEDA S. Modeling of membrane-aerated biofilm:effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification[J]. Biochemical Engineering Journal, 2007, 37(1):98-107. [67] PENG L, CHEN X M, XU Y F, et al. Biodegradation of pharmaceuticals in membrane aerated biofilm reactor for autotrophic nitrogen removal:a model-based evaluation[J]. Journal of Membrane Science, 2015, 494:39-47. [68] XU Y F, PENG L, LIU Y W, et al. Modelling melamine biodegradation in a membrane aerated biofilm reactor[J]. Journal of Water Process Engineering, 2020, 38:101626. [69] ELSAYED A, HURDLE M, KIM Y. Comprehensive model applications for better understanding of pilot-scale membrane-aerated biofilm reactor performance[J]. 2021, 40:101894. [70] Predation creates unique void layer in membrane-aerated biofilms[J]. Water Research, 2019, 149:232-242. [71] CAO C Q, ZHAO L L, XU D Y, et al. Membrane-aerated biofilm reactor behaviors for the treatment of high-strength ammonium industrial wastewater[J]. Chemical Engineering & Technology, 2009, 32(4):613-621. [72] MA Y J, DOMINGO-FÉLEZ C, PLÓSZ B GY, et al. Intermittent aeration suppresses nitrite-oxidizing bacteria in membrane-aerated biofilms:a model-based explanation[J]. Environmental Science & Technology, 2017, 51(11):6146-6155. [73] 胡绍伟. 厌氧折流板反应器与膜曝气生物膜反应器的耦合作用研究[D]. 大连:大连理工大学, 2008. [74] 李玫. MABR脱氮除碳效能优化与数学模型研究[D]. 天津:天津大学, 2019. [75] CHEN X M, HUO P F, LIU J Z, et al. The model predicted N2O production from membrane-aerated biofilm reactor is greatly affected by biofilm property settings[J]. Chemosphere, 2021, 281:130861. [76] SYRON E, CASEY E. Model-based comparative performance analysis of membrane aerated biofilm reactor configurations[J]. Biotechnology and Bioengineering, 2008, 99(6):1361-1373. [77] 刘汝康. 基于MABR的煤化工反渗透浓水深度处理技术研究[D]. 天津:天津大学, 2020. [78] PAVASANT P, DOS SANTOS L M F, PISTIKOPOULOS E N, et al. Prediction of optimal biofilm thickness for membrane-attached biofilms growing in an extractive membrane bioreactor[J]. Biotechnology and Bioengineering, 1996, 52(3):373-386. [79] HEFFERNAN B, MURPHY C D, SYRON E, et al. Treatment of fluoroacetate by a Pseudomonas fluorescens biofilm grown in membrane aerated biofilm reactor[J]. Environmental Science & Technology, 2009, 43(17):6776-6785. [80] LU D W, BAI H, KONG F G, et al. Recent advances in membrane aerated biofilm reactors[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(7):649-703. [81] JANKNECHT P, MELO J F. Online biofilm monitoring[J]. Reviews in Environmental Science & Biotechnology, 2003,2:269-283. [82] KARNA D, VISVANATHAN C. From conventional activated sludge process to membrane-aerated biofilm reactors:scope, applications, and challenges[M]//Water and Wastewater Treatment Technologies. Singapore:Springer, 2019:237-263[2022-07-10]. [83] LIU Y W, NGO H H, GUO W S, et al. Autotrophic nitrogen removal in membrane-aerated biofilms:archaeal ammonia oxidation versus bacterial ammonia oxidation[J]. Chemical Engineering Journal, 2016, 302:535-544. [84] RITTMANN B, MCCARTY P. Environmental Biotechnology:Principles and Applications[M]. New York:MacGraw Hill, 2001. [85] LU D, BAI H, LIAO B. Comparison between thermophilic and mesophilic membrane-aerated biofilm reactors:a modeling study[J]. Membranes, 2022, 12(4):418. [86] CASEY E, GLENNON B, HAMER G. Biofilm development in a membrane-aerated biofilm reactor:effect of flow velocity on performance[J]. Biotechnology and Bioengineering, 2000, 67(4):476-486. [87] 吴云, 张楠, 张宏伟, 等. 膜曝气生物膜反应器内流场的CFD模拟及组件优化[J]. 化工学报, 2015, 66(1):402-409. [88] PLASCENCIA-JATOMEA R, ALMAZÁN-RUIZ F J, GÓMEZ J, et al. Hydrodynamic study of a novel membrane aerated biofilm reactor (MABR):tracer experiments and CFD simulation[J]. Chemical Engineering Science, 2015, 138:324-332. [89] DING Z W, LIYING L, RUNYU M. Study on the effect of flow maldistribution on the performance of the hollow fiber modules used in membrane distillation[J]. Journal of Membrane Science, 2003, 215(1):11-23.
点击查看大图
计量
- 文章访问数: 304
- HTML全文浏览量: 48
- PDF下载量: 23
- 被引次数: 0