中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

膜曝气生物膜反应器数学模型的研究进展

乔怡雯 任乐辉 王志伟

乔怡雯, 任乐辉, 王志伟. 膜曝气生物膜反应器数学模型的研究进展[J]. 环境工程, 2023, 41(3): 243-254. doi: 10.13205/j.hjgc.202303033
引用本文: 乔怡雯, 任乐辉, 王志伟. 膜曝气生物膜反应器数学模型的研究进展[J]. 环境工程, 2023, 41(3): 243-254. doi: 10.13205/j.hjgc.202303033
QIAO Yiwen, REN Lehui, WANG Zhiwei. RECENT ADVANCES IN MATHEMATICAL MODELS FOR MEMBRANE-AERATED BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 243-254. doi: 10.13205/j.hjgc.202303033
Citation: QIAO Yiwen, REN Lehui, WANG Zhiwei. RECENT ADVANCES IN MATHEMATICAL MODELS FOR MEMBRANE-AERATED BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 243-254. doi: 10.13205/j.hjgc.202303033

膜曝气生物膜反应器数学模型的研究进展

doi: 10.13205/j.hjgc.202303033
详细信息
    作者简介:

    乔怡雯(1999-),女,硕士,主要研究方向为膜曝气生物膜反应器相关水处理技术。q_yiwen@tongji.edu.cn

    通讯作者:

    王志伟(1980-),男,教授,博士生导师,主要研究方向为膜法污水处理与资源化技术。zwwang@tongji.edu.cn

RECENT ADVANCES IN MATHEMATICAL MODELS FOR MEMBRANE-AERATED BIOFILM REACTOR

  • 摘要: 污(废)水处理与资源化是控制水体污染、缓解水资源短缺的重要手段。高效的污水处理工艺是实现污水处理与资源化的关键。膜曝气生物膜反应器(membrane-aerated biofilm reactor, MABR)是一种集膜技术和生物膜技术于一体的新型污水处理技术,具有氧传质效率高、同步除碳脱氮等优势,因此在污(废)水处理领域得到广泛研究与应用。MABR数学模型是依托于数理逻辑方法的系统定量描述,对于深入解析MABR系统运行机理、优化工艺参数具有重要意义。通过回顾MABR数学模型的发展历程,从底层逻辑出发归纳概括了MABR数学模型涉及的主要过程(包括MABR传质过程模型和MABR反应过程模型);分析了MABR模型研究中的关键影响参数;总结了现有MABR模型研究中存在的问题,并对今后MABR数学模型的研究方向进行了展望。
  • [1] CASEY E, GLENNON B, HAMER G. Review of membrane aerated biofilm reactors[J]. Resources, Conservation and Recycling, 1999, 27(1):203-215.
    [2] TIAN H L, LIU J, FENG T T, et al. Assessing the performance and microbial structure of biofilms adhering on aerated membranes for domestic saline sewage treatment[J]. RSC Advances, 2017, 7(44):27198-27205.
    [3] TIAN H L, YAN Y C, CHEN Y W, et al. Process performance and bacterial community structure under increasing influent disturbances in a membrane-aerated biofilm reactor[J]. J. Microbiol. Biotechnol., 2016, 26(2):373-384.
    [4] LIU R K, WANG Q, LI M, et al. Advanced treatment of coal chemical reverse osmosis concentrate with three-stage MABR[J]. RSC Advances, 2020,10(17):10178-10187.
    [5] POTVIN C M, LONG Z, ZHOU H. Removal of tetrabromobisphenol A by conventional activated sludge, submerged membrane and membrane aerated biofilm reactors[J]. Chemosphere, 2012, 89(10):1183-1188.
    [6] MEI X, GUO Z W, LIU J, et al. Treatment of formaldehyde wastewater by a membrane-aerated biofilm reactor (MABR):the degradation of formaldehyde in the presence of the cosubstrate methanol[J]. Chemical Engineering Journal, 2019, 372:673-683.
    [7] MEI X, LIU J, GUO Z W, et al. Simultaneous p-nitrophenol and nitrogen removal in PNP wastewater treatment:comparison of two integrated membrane-aerated bioreactor systems[J]. Journal of Hazardous Materials, 2019, 363:99-108.
    [8] LI T G, LIU J X, BAI R B, et al. Membrane-aerated biofilm reactor for the treatment of acetonitrile wastewater[J]. Environmental Science & Technology, 2008, 42(6):2099-2104.
    [9] LI M, LI P, DU C Y, et al. Pilot-scale study of an integrated membrane-aerated biofilm reactor system on urban river remediation[J]. Industrial & Engineering Chemistry Research, 2016, 55(30):8373-8382.
    [10] 李浩, 李鹏, 李波, 等. MABR用于城市景观河道水体修复的研究[J]. 膜科学与技术, 2016, 36(6):101-107

    ,118.
    [11] HE H Q, WAGNER B M, CARLSON A L, et al. Recent progress using membrane aerated biofilm reactors for wastewater treatment[J]. Water Science and Technology, 2021, 81(9):2131-2157.
    [12] YASUDA H, LAMAZE C E. Transfer of gas to dissolved oxygen in water via porous and nonporous polymer membranes[J]. Journal of Applied Polymer Science, 1972, 16(3):595-601.
    [13] CÔTÉ P, BERSILLON J L, HUYARD A. Bubble-free aeration using membranes:mass transfer analysis[J]. Journal of Membrane Science, 1989, 47(1):91-106.
    [14] WANNER O, GUJER W. A multispecies biofilm model[J]. Biotechnology and Bioengineering, 1986, 28(3):314-328.
    [15] DEBUS O, WANNER O. Degradation of xylene by a biofilm growing on a gas-permeable membrane[J]. Water Science and Technology, 1992, 26(3/4):607-616.
    [16] 蔡庆. 生物膜数学模型研究进展[J]. 广州化工, 2015, 43(6):4-6.
    [17] HENZE M, GUJER W, MINO T, et al. Activated sludge models ASM1, ASM2, ASM2D, ASM3[J]. Water Intelligence Online, 2000, 5[2022-07-12].
    [18] MATSON J V, CHARACKLIS W G. Diffusion into microbial aggregates[J]. Water Research, 1976, 10(10):877-885.
    [19] KARTOHARDJONO S, CHEN V. Mass transfer and fluid hydrodynamics in sealed end hydrophobic hollow fiber membrane gas-liquid contactors[J]. Journal of Applied Membrane Science & Technology, 2017, 2(1):1-12.
    [20] FAN L S, LEYVA-RAMOS R, WISECARVER K D, et al. Diffusion of phenol through a biofilm grown on activated carbon particles in a draft-tube three-phase fluidized-bed bioreactor[J]. Biotechnology and Bioengineering, 1990, 35(3):279-286.
    [21] YANG M C, CUSSLER E L. Designing hollow-fiber contactors[J]. AIChE Journal, 1986, 32(11):1910-1916.
    [22] WICKRAMASINGHE S R, SEMMENS M J, CUSSLER E L. Mass transfer in various hollow fiber geometries[J]. Journal of Membrane Science, 1992, 69(3):235-250.
    [23] CUSSLER E L. Hollow fiber modules made with hollow fiber fabric[J]. Journal of Membrane Science, 1993,84(1/2):1-14.
    [24] ZHENG J M, DAI Z W, WONG F S, et al. Shell side mass transfer in a transverse flow hollow fiber membrane contactor[J]. Journal of Membrane Science, 2005, 261(1):114-120.
    [25] SHEN S, KENTISH S E, STEVENS G W. Shell-side mass-transfer performance in hollow-fiber membrane contactors[J]. Solvent Extraction and Ion Exchange, 2010[2022-06-23].
    [26] PELLICER-NÀCHER C, DOMINGO-FÉLEZ C, LACKNER S, et al. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors[J]. Journal of Membrane Science, 2013, 446:465-471.
    [27] KAREL S F, LIBICKI S B, ROBERTSON C R. The immobilization of whole cells:engineering principles[J]. Chemical Engineering Science, 1985, 40(8):1321-1354.
    [28] LIBICKI S B, SALMON P M, ROBERTSON C R. The effective diffusive permeability of a nonreacting solute in microbial cell aggregates[J]. Biotechnology and Bioengineering, 1988, 32(1):68-85.
    [29] SAN H A, TANIK A, ORHON D. Micro-scale modelling of substrate removal kinetics in multicomponent fixed-film systems[J]. Journal of Chemical Technology & Biotechnology, 1993, 58(1):39-48.
    [30] de BEER D, STOODLEY P. Relation between the structure of an aerobic biofilm and transport phenomena[J]. Water Science and Technology, 1995, 32(8):11-18.
    [31] BISHOP P L, ZHANG T C, FU Y C. Effects of biofilm structure, microbial distributions and mass transport on biodegradation processes[J]. Water Science and Technology, 1995, 31(1):143-152.
    [32] WILLIAMSON K, MCCARTY P L. A model of substrate utilization by bacterial films[J]. Journal-Water Pollution Control Federation, 1976, 48(1):9-24.
    [33] CUNNINGHAM A B, VISSER E, LEWANDOWSKI Z, et al. Evaluation of a coupled mass transport-biofilm process modelusing dissolved oxygenmicrosensors[J]. Water Science and Technology, 1995, 32(8):107-114.
    [34] BENEFIELD L, MOLZ F. Mathematical simulation of a biofilm process[J]. Biotechnology and Bioengineering, 1985, 27(7):921-931.
    [35] ZHANG S F, SPLENDIANI A, DOS SANTOS L M F, et al. Determination of pollutant diffusion coefficients in naturally formed biofilms using a single tube extractive membrane bioreactor[J]. Biotechnology and Bioengineering, 1998, 59(1):80-89.
    [36] CASEY E, GLENNON B, HAMER G. Biofilm development in a membrane-aerated biofilm reactor:effect of intra-membrane oxygen pressure on performance[J]. Bioprocess Engineering, 2000, 23(5):457-465.
    [37] KAREL S F, ROBERTSON C R. Reaction rate calculations for cosubstrates diffusing into catalyst layer from opposite sides[J]. Biotechnology and Bioengineering, 1987, 30(3):427-438.
    [38] CASEY E, GLENNON B, HAMER G. Oxygen mass transfer characteristics in a membrane-aerated biofilm reactor[J]. Biotechnology and Bioengineering, 1999, 62(2):183-192.
    [39] GONZÁLEZ-BRAMBILA M M, LOPEZ-ISUNZA F. Modelling of the transient behaviour of a membrane-attached biofilm reactor under successive pulses of a synthetic wastewater substrate[J]. International Journal of Chemical Reactor Engineering, 2008, 6(1):1-28.
    [40] RISHELL S, CASEY E, GLENNON B, et al. Characteristics of a methanotrophic culture in a membrane-aerated biofilm reactor[J]. Biotechnology Progress, 2004, 20(4):1082-1090.
    [41] LIU Y R, ZHU T T, REN S Q, et al. Contribution of nitrification and denitrification to nitrous oxide turnovers in membrane-aerated biofilm reactors (MABR):a model-based evaluation[J]. Science of The Total Environment, 2022, 806:151321.
    [42] WU J, ZHANG Y. Evaluation of the impact of organic material on the anaerobic methane and ammonium removal in a membrane aerated biofilm reactor (MABR) based on the multispecies biofilm modeling[J]. Environmental Science and Pollution Research, 2017, 24(2):1677-1685.
    [43] SYRON E, SEMMENS M J, CASEY E. Performance analysis of a pilot-scale membrane aerated biofilm reactor for the treatment of landfill leachate[J]. Chemical Engineering Journal, 2015, 273:120-129.
    [44] LACKNER S, SMETS B F. Effect of the kinetics of ammonium and nitrite oxidation on nitritation success or failure for different biofilm reactor geometries[J]. Biochemical Engineering Journal, 2012, 69:123-129.
    [45] NI B J, YUAN Z. A model-based assessment of nitric oxide and nitrous oxide production in membrane-aerated autotrophic nitrogen removal biofilm systems[J]. Journal of Membrane Science, 2013, 428:163-171.
    [46] LACKNER S, TERADA A, HORN H, et al. Nitritation performance in membrane-aerated biofilm reactors differs from conventional biofilm systems[J]. Water Research, 2010, 44(20):6073-6084.
    [47] COLE A C, SHANAHAN J W, SEMMENS M J, et al. Preliminary studies on the microbial community structure of membrane-aerated biofilms treating municipal wastewater[J]. Desalination, 2002, 146(1):421-426.
    [48] ZHANG T C, BISHOP P L. Density, porosity, and pore structure of biofilms[J]. Water Research, 1994, 28(11):2267-2277.
    [49] CHEN X M, YANG L Y, SUN J, et al. Influences of longitudinal heterogeneity on nitrous oxide production from membrane-aerated biofilm reactor:a modeling perspective[J]. Environmental Science & Technology, 2020, 54(17):10964-10973.
    [50] HORN H, HEMPEL D C. Substrate utilization and mass transfer in an autotrophic biofilm system:experimental results and numerical simulation[J]. Biotechnology and Bioengineering, 1997, 53(4):363-371.
    [51] WAGNER B M, DAIGGER G T, LOVE N G. Assessing membrane aerated biofilm reactor configurations in mainstream anammox applications[J]. Water Science and Technology, 2022, 85(3):943-960.
    [52] HIBIYA K, TERADA A, TSUNEDA S, et al. Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor[J]. Journal of Biotechnology, 2003, 100(1):23-32.
    [53] MARTIN K J, NERENBERG R. The membrane biofilm reactor (MBfR) for water and wastewater treatment:principles, applications, and recent developments[J]. Bioresource Technology, 2012, 122:83-94.
    [54] ACEVEDO A V, LACKNER S. Membrane aerated biofilm reactors-how longitudinal gradients influence nitrogen removal:a conceptual study[J]. Water Research, 2019, 166:115060.
    [55] PICIOREANU C, van LOOSDRECHT M C M, HEIJNEN J J. A new combined differential-discrete cellular automaton approach for biofilm modeling:application for growth in gel beads[J]. Biotechnology and Bioengineering, 1998, 57(6):718-731.
    [56] BELL A, AOI Y, TERADA A, et al. Comparison of spatial organization in top-down- and membrane-aerated biofilms:a numerical study[J]. Water Science and Technology, 2005, 52(7):173-180.
    [57] SHANAHAN J W, SEMMENS M J. Alkalinity and pH effects on nitrification in a membrane aerated bioreactor:an experimental and model analysis[J]. Water Research, 2015, 74:10-22.
    [58] VAFAJOO L, PAZOKI M. Model-based evaluations of operating parameters on CANON process in a membrane-aerated biofilm reactor[J]. Desalination and Water Treatment, 2013, 51(19/20/21):4228-4234.
    [59] TIMBERLAKE D L, STRAND S E, WILLIAMSON K J. Combined aerobic heterotrophic oxidation, nitrification and denitrification in a permeable-support biofilm[J]. Water Research, 1988, 22(12):1513-1517.
    [60] BUNSE P, ORSCHLER L, AGRAWAL S, et al. Membrane aerated biofilm reactors for mainstream partial nitritation/anammox:experiences using real municipal wastewater[J]. Water Research, 2020, 9:100066.
    [61] SUN J, DAI X H, LIU Y W, et al. Sulfide removal and sulfur production in a membrane aerated biofilm reactor:model evaluation[J]. Chemical Engineering Journal, 2017, 309:454-462.
    [62] JIANG X Y, XU B, WU J. Sulfur recovery in the sulfide-oxidizing membrane aerated biofilm reactor:experimental investigation and model simulation[J]. Environmental Technology, 2019, 40(12):1557-1567.
    [63] 侯霙, 王暄, 吕晓龙, 等. 疏水性中空纤维微孔膜无泡曝气试验研究[J]. 中国给水排水, 2011, 27(13):100-102.
    [64] PÉREZ-CALLEJA P, CLEMENTS E, NERENBERG R. Enhancing ammonium oxidation fluxes and nitritation efficiencies in MABRs:a modeling study[J]. Environmental Science:Water Research & Technology, 2022, 8(2):358-374.
    [65] TERADA A, LACKNER S, TSUNEDA S, et al. Redox-stratification controlled biofilm (ReSCoBi) for completely autotrophic nitrogen removal:the effect of co-versus counter-diffusion on reactor performance[J]. Biotechnology and Bioengineering, 2007, 97(1):40-51.
    [66] MATSUMOTO S, TERADA A, TSUNEDA S. Modeling of membrane-aerated biofilm:effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification[J]. Biochemical Engineering Journal, 2007, 37(1):98-107.
    [67] PENG L, CHEN X M, XU Y F, et al. Biodegradation of pharmaceuticals in membrane aerated biofilm reactor for autotrophic nitrogen removal:a model-based evaluation[J]. Journal of Membrane Science, 2015, 494:39-47.
    [68] XU Y F, PENG L, LIU Y W, et al. Modelling melamine biodegradation in a membrane aerated biofilm reactor[J]. Journal of Water Process Engineering, 2020, 38:101626.
    [69] ELSAYED A, HURDLE M, KIM Y. Comprehensive model applications for better understanding of pilot-scale membrane-aerated biofilm reactor performance[J]. 2021, 40:101894.
    [70] Predation creates unique void layer in membrane-aerated biofilms[J]. Water Research, 2019, 149:232-242.
    [71] CAO C Q, ZHAO L L, XU D Y, et al. Membrane-aerated biofilm reactor behaviors for the treatment of high-strength ammonium industrial wastewater[J]. Chemical Engineering & Technology, 2009, 32(4):613-621.
    [72] MA Y J, DOMINGO-FÉLEZ C, PLÓSZ B GY, et al. Intermittent aeration suppresses nitrite-oxidizing bacteria in membrane-aerated biofilms:a model-based explanation[J]. Environmental Science & Technology, 2017, 51(11):6146-6155.
    [73] 胡绍伟. 厌氧折流板反应器与膜曝气生物膜反应器的耦合作用研究[D]. 大连:大连理工大学, 2008.
    [74] 李玫. MABR脱氮除碳效能优化与数学模型研究[D]. 天津:天津大学, 2019.
    [75] CHEN X M, HUO P F, LIU J Z, et al. The model predicted N2O production from membrane-aerated biofilm reactor is greatly affected by biofilm property settings[J]. Chemosphere, 2021, 281:130861.
    [76] SYRON E, CASEY E. Model-based comparative performance analysis of membrane aerated biofilm reactor configurations[J]. Biotechnology and Bioengineering, 2008, 99(6):1361-1373.
    [77] 刘汝康. 基于MABR的煤化工反渗透浓水深度处理技术研究[D]. 天津:天津大学, 2020.
    [78] PAVASANT P, DOS SANTOS L M F, PISTIKOPOULOS E N, et al. Prediction of optimal biofilm thickness for membrane-attached biofilms growing in an extractive membrane bioreactor[J]. Biotechnology and Bioengineering, 1996, 52(3):373-386.
    [79] HEFFERNAN B, MURPHY C D, SYRON E, et al. Treatment of fluoroacetate by a Pseudomonas fluorescens biofilm grown in membrane aerated biofilm reactor[J]. Environmental Science & Technology, 2009, 43(17):6776-6785.
    [80] LU D W, BAI H, KONG F G, et al. Recent advances in membrane aerated biofilm reactors[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(7):649-703.
    [81] JANKNECHT P, MELO J F. Online biofilm monitoring[J]. Reviews in Environmental Science & Biotechnology, 2003,2:269-283.
    [82] KARNA D, VISVANATHAN C. From conventional activated sludge process to membrane-aerated biofilm reactors:scope, applications, and challenges[M]//Water and Wastewater Treatment Technologies. Singapore:Springer, 2019:237-263[2022-07-10].
    [83] LIU Y W, NGO H H, GUO W S, et al. Autotrophic nitrogen removal in membrane-aerated biofilms:archaeal ammonia oxidation versus bacterial ammonia oxidation[J]. Chemical Engineering Journal, 2016, 302:535-544.
    [84] RITTMANN B, MCCARTY P. Environmental Biotechnology:Principles and Applications[M]. New York:MacGraw Hill, 2001.
    [85] LU D, BAI H, LIAO B. Comparison between thermophilic and mesophilic membrane-aerated biofilm reactors:a modeling study[J]. Membranes, 2022, 12(4):418.
    [86] CASEY E, GLENNON B, HAMER G. Biofilm development in a membrane-aerated biofilm reactor:effect of flow velocity on performance[J]. Biotechnology and Bioengineering, 2000, 67(4):476-486.
    [87] 吴云, 张楠, 张宏伟, 等. 膜曝气生物膜反应器内流场的CFD模拟及组件优化[J]. 化工学报, 2015, 66(1):402-409.
    [88] PLASCENCIA-JATOMEA R, ALMAZÁN-RUIZ F J, GÓMEZ J, et al. Hydrodynamic study of a novel membrane aerated biofilm reactor (MABR):tracer experiments and CFD simulation[J]. Chemical Engineering Science, 2015, 138:324-332.
    [89] DING Z W, LIYING L, RUNYU M. Study on the effect of flow maldistribution on the performance of the hollow fiber modules used in membrane distillation[J]. Journal of Membrane Science, 2003, 215(1):11-23.
  • 加载中
计量
  • 文章访问数:  314
  • HTML全文浏览量:  48
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 网络出版日期:  2023-05-26
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回