中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

排水管道中雨污水颗粒物沉降速率特征分析

吴俊

吴俊. 排水管道中雨污水颗粒物沉降速率特征分析[J]. 环境工程, 2023, 41(4): 1-9. doi: 10.13205/j.hjgc.202304001
引用本文: 吴俊. 排水管道中雨污水颗粒物沉降速率特征分析[J]. 环境工程, 2023, 41(4): 1-9. doi: 10.13205/j.hjgc.202304001
WU Jun. ANALYSIS OF SETTLING VELOCITY OF PARTICULATES IN FLOWS IN DRY AND WET WEATHER FROM THE COMBINED SEWER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 1-9. doi: 10.13205/j.hjgc.202304001
Citation: WU Jun. ANALYSIS OF SETTLING VELOCITY OF PARTICULATES IN FLOWS IN DRY AND WET WEATHER FROM THE COMBINED SEWER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 1-9. doi: 10.13205/j.hjgc.202304001

排水管道中雨污水颗粒物沉降速率特征分析

doi: 10.13205/j.hjgc.202304001
基金项目: 

上海城投(集团)有限公司科技创新计划项目(CTKY-ZDZX-2022-003)

上海"超级博士后"激励计划资助(2020183)

国家重点研发计划(2022YFC3801004)

上海"超级博士后"资助项目上海城投(集团)有限公司配套专项(CTKY-PTZX-2022-028)

2021年深圳环水科技技术咨询课题"深圳排海干渠运行风险检测及评估项目——技术咨询工作"(深环水管网科技招(投)字(2021)223号)

详细信息
    作者简介:

    吴俊(1988-),男,博士,工程师,主要从事排水系统提质增效及河流污染治理相关研究及工程实践。wujunz2929@sina.com

ANALYSIS OF SETTLING VELOCITY OF PARTICULATES IN FLOWS IN DRY AND WET WEATHER FROM THE COMBINED SEWER

  • 摘要: 排水管道可接纳雨水径流和旱流污水,雨天形成雨污混合水,水流中部分颗粒沉降至管底形成沉积物。对比分析上述各环节中颗粒物的沉降速率特征,有助于提高对雨污混合水的管控效率。研究选取某合流管段,采集雨污混合水、雨水径流、管道沉积物及旱流污水,并采用淘析分离方法,开展颗粒物沉降速率(SV)特征分析,基于此建立颗粒物沉降速率与质量占比的拟合关系。结果显示,雨污混合水中颗粒物SV≥0.265 mm/s的比例与管道沉积物相近,且与雨水径流及旱流污水存在一定差异,说明在雨天水流运行过程中,部分管道沉积物被冲起,使雨污混合水中颗粒物SV得到显著提升。进一步分析显示,在每个SV下,降雨量越高,低于该SV的颗粒占比更少,且不易沉降的颗粒态污染物占比将会更高。该结果一方面说明,在较高雨量下SV较高的颗粒物更多被冲刷进入雨污混合水中;另一方面也说明,当雨天管网水量增加时,将会有更多不易沉降的颗粒态污染物进入管网下游,重力沉降设施的拦截效率将会显著下降。不同污染物的富集情况显示,PAHs、Cd、Cr和Pb在SV≥0.265 mm/s的颗粒物中占比较高,因此当设定SV=0.265 mm/s对雨污混合水进行重力沉降处理时,PAHs、Cd、Cr和Pb 4类有害污染物将会得到有效削减。基于上述数据建立了颗粒物SV与质量占比关系特征,即x=lnB/(A-y)(R2>0.95),该结果有助于实现特定SV下的颗粒物及颗粒态污染物质量比的快速转化。
  • [1] 同济大学.《中华人民共和国水污染防治法》上海市实施情况评估报告[R]. 上海:上海市人民代表大会常务委员会, 2019.
    [2] XU Z X, XIONG L J, LI H Z, et al. Pollution characterization and source analysis of the wet weather discharges in storm drainages[J]. Desalination & Water Treatment, 2017, 72(APR.):169-181.
    [3] XU Z X, WU J, LI H Z, et al. Characterizing heavy metals in combined sewer overflows and its influence on microbial diversity[J]. Science of the Total Environment, 2018, 625: 1272-1282.
    [4] 赵庆豪. 雨天合流制排水系统水质水量调查与分析[D]. 武汉:武汉理工大学, 2013.
    [5] PIRO P, CARBONE M, GAROFALO G, et al. Size distribution of wet weather and dry weather particulate matter entrained in combined flows from an urbanizing sewershed[J]. Water Air and Soil Pollution, 2010, 206(1/2/3/4): 83-94.
    [6] HOWARD A, MOHSENI O, GULLIVER J, et al. SAFL Baffle retrofit for suspended sediment removal in storm sewer sumps[J]. Water Research, 2011, 45(18): 5895-5904.
    [7] HEDGES P D, BECKER F A, SMISSON R. The application of settling velocity as a parameter for characterising wastewater solids[J]. Water Science & Technology, 1998, 37(1): 45-52.
    [8] EXALL K, MARSALEK J, KRISHNAPPAN B G. Hydraulic fractionation of conventional water quality constituents in municipal dry-and wet-weather flow samples[J]. Water Science & Technology, 2009, 59(6): 1159-1167.
    [9] CHEBBO G, BACHOC A. Characterization of suspended solids in urban wet weather discharges[J]. Water Science & Technology, 1992, 25(8): 171-179.
    [10] KRISHNAPPAN B G, EXALL K, MARSALEK J, et al. Variability of settling characteristics of solids in dry and wet weather flows in combined sewers: implications for CSO treatment[J]. Water, Air, & Soil Pollution, 2012, 223(6): 3021-3032.
    [11] KRISHNAPPAN B G, MARSALEK J, EXALL K, et al. A water elutriation apparatus for measuring settling velocity distribution of suspended solids in combined sewer overflows[J]. Water Quality Research Journal, 2004, 39(4): 432-438.
    [12] MARSALEK J, KRISHNAPPAN B G, EXALL K, et al. An elutriation apparatus for assessing settleability of combined sewer overflows (CSOs)[J]. Water Science & Technology, 2006, 54(6/7): 223-230.
    [13] 国家环境保护局. 水质 悬浮物的测定 重量法:GB 11901—89[S]. 北京:中国标准出版社, 1991.
    [14] 国家环境保护总局. 总有机碳(TOC)水质自动分析仪技术要求:HJ/T 104—2003[S]. 北京:中国环境科学出版社, 2003.
    [15] 李政,高健磊,闫怡新. 一种快速测定污泥滤液中蛋白质含量的方法[J]. 给水排水, 2022, 58(S1): 30-33.
    [16] 环境保护部. 固体废物 金属元素的测定 电感耦合等离子体质谱法[S]. 北京:中国环境科学出版社, 2015.
    [17] 生态环境部. 固体废物 多环芳烃的测定 气象色谱-质谱法[S]. 北京:中国环境科学出版社, 2018.
    [18] 赵梦圆,王建龙,黄涛,等. 北京市雨水径流中颗粒物沉降特性[J]. 环境工程, 2019, 37(2): 67-72.
    [19] GROMAIRE M C, KAFI-BENYAHIA M, GASPERI J, et al. Settling velocity of particulate pollutants from combined sewer wet weather discharges[J]. Water Science & Technology, 2008, 58(12): 2453.
    [20] XU Z, WU J, LI H, et al. Different erosion characteristics of sediment deposits in combined and storm sewers[J]. Water Science & Technology, 2017, 8(75): 1922-1931.
    [21] ZHANG J, HUA P, KREBS P. The chemical fractionation and potential source identification of Cu, Zn and Cd on urban watershed[J]. Water Science & Technology, 2015, 72(8): 1428-1436.
    [22] SANDOVAL S, TORRES A, PAWLOWSKY-REUSING E, et al. The evaluation of rainfall influence on combined sewer overflows characteristics: the Berlin case study[J]. Water Science & Technology, 2013, 68(12): 2683-2690.
    [23] GASPERI J, LORGEOUX C, MOILLERON R, et al. Settling velocity grading of particle bound pahs: case of wet weather flows within combined sewer systems[J]. Journal of Environmental Engineering (New York, N.Y.), 2009, 135(11): 1155-1160.
    [24] ZHOU Y, ZHANG P, ZHANG Y, et al. Total and settling velocity-fractionated pollution potential of sewer sediments in Jiaxing, China[J]. Environmental Science and Pollution Research, 2017, 24(29): 23133-23143.
    [25] MARKUSSEN T N, ANDERSEN T J. A simple method for calculating in situ floc settling velocities based on effective density functions[J]. Marine Geology, 2013, 344(Complete): 10-18.
    [26] KOSTADINOV T S, SIEGEL D A, Maritorena S. Retrieval of the particle size distribution from satellite ocean color observations[J]. Journal of Geophysical Research, 2009, 114(C9): C9015.
    [27] YU J N, ZHAO R J, GAO Y X, et al. Effects of particle size on the zone settling velocity of activated sludge[J]. Environmental Engineering Science, 2016, 33(6): 423-429.
    [28] MARUÉJOULS T, LESSARD P, VANROLLEGHEM P. A. Calibration and validation of a dynamic model for water quality in combined sewer retention tanks[J]. Urban Water Journal, 2014, 11(8): 668-677.
    [29] MARUÉJOULS T, VANROLLEGHEM P A, PELLETIER G, et al. A phenomenological retention tank model using settling velocity distributions[J]. Water Research, 2012, 46(20): 6857-6867.
    [30] MENG D L, WU J, CHEN K L, et al. Effects of extracellular polymeric substances and microbial community on the anti-scouribility of sewer sediment[J]. Science of the Total Environment, 2019, 687: 494-504.
    [31] RIETVELD M, CLEMENS F, LANGEVELD J. Monitoring and characterising the solids loading dynamics to drainage systems via gully pots[J]. Urban Water Journal, 2021, 18(9): 699-710.
    [32] LIAO Z L, HU T T, ROKER S A C. An obstacle to China’s WWTPs: the COD and BOD standards for discharge into municipal sewers[J]. Environmental Science and Pollution Research, 2015, 22(21): 16434-16440.
    [33] DELETIC A, ORR D W. Pollution buildup on road surfaces[J]. Journal of Environmental Engineering, 2005, 131(1): 49-59.
    [34] BREUSERS H, RAUDKIVI A J. Scouring: Hydraulic Structures Design Manual Series, Vol. 2[M]. Rotterdam: A. A. Balkema Publishers, 1991.
    [35] SECO I, GÓMEZ V M, SCHELLART A, et al. Erosion resistance and behaviour of highly organic in-sewer sediment[J]. Water Science & Technology, 2014, 69(3): 672-679.
    [36] PATOWARY S, SARMA A K. Two-Dimensional Numerical Model for Urban Drainage System[M]//Sarma A K, Singh V P, Kartha S A, et al. Urban Hydrology, Watershed Management and Socio-Economic Aspects. Cham: Springer International Publishing, 2016, 163-173.
    [37] 中华人民共和国住房和城乡建设部,国家市场监督管理总局. 室外排水设计标准:GB 50014—2021[S]. 北京:中国计划出版社,2021.
  • 加载中
计量
  • 文章访问数:  692
  • HTML全文浏览量:  56
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-25
  • 网络出版日期:  2023-05-26
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回