PERFORMANCE OF Bi2WO6@MXenes-NS ACTIVATED PERMONOSULFATE IN DEGRADING BISPHENOL A
-
摘要: 为解决水环境中内分泌干扰物的去除难题,采用水热法合成Bi2WO6@MXenes-NS(BM-NS)复合催化剂,通过活化过单硫酸盐(PMS)降解双酚A (BPA)。利用SEM、TEM及XRD对所制备催化剂的形貌和晶体结构进行表征,考察了不同催化剂体系、PMS浓度,溶液pH和共存离子等因素对BPA降解性能的影响。结果表明:当MXenes-NS添加量(质量分数)为0.5%,催化剂浓度为1 g/L,PMS浓度为0.3 g/L,溶液pH为3.03时,BM-NS/PMS体系具有较强的BPA降解性能,120 min内去除率达到85.3%。溶液中无机阴离子对BPA去除率的影响顺序为Cl-
2PO-4 2-4 -3≈NO-3。催化剂经过4次循环实验后,BPA去除率仍保持在70.1%。自由基猝灭实验结果表明,SO-4·是主要的活性自由基。结合LC-MS,提出了BPA可能的降解途径。研究表明,制备的BM-NS催化剂在活化PMS降解BPA方面具有良好的应用前景。 Abstract: In order to solve the problem of removing endocrine disruptors in water environment, Bi2WO6@MXenes-NS(BM-NS) composite catalyst was synthesized by hydrothermal method, and bisphenol A (BPA) was degraded by activation of permonosulfate (PMS). The morphology and crystal structure of the catalyst were characterized by SEM, TEM and XRD. The effects of different catalyst systems, PMS concentrations, solution pH and coexisting ions on the degradation of BPA were investigated. The results showed that when the concentration of MXenes-NS was 0.5%, the concentration of catalyst was 1 g/L, the concentration of PMS was 0.3 g/L, and the solution pH was 3.03, BM-NS/PMS system had a strong BPA degradation performance, and the removal rate reached 85.3% within 120 min. In addition, the effects of inorganic anions on BPA removal were in a sequence as follows: Cl-2PO-4 2-4 -3≈NO-3. The removal rate of BPA remained 70.1% after 4 cycles. The results of the radical quenching experiment showed that SO-4· was the main active radical. Combined with LC-MS, the possible degradation pathway of BPA was proposed. The above experimental results indicated that the prepared BM-NS catalyst had a good application prospect in activating PMS to degrade BPA. -
Key words:
- Bi2WO6 /
- MXenes-NS /
- permonosulfate /
- sulfate radical SO-4· /
-
[1] SUN P P,LIU X M,ZHANG M H,et al. Sorption and leaching behaviors between aged MPs and BPA in water: the role of BPA binding modes within plastic matrix[J]. Water Research,2021,195:116956. [2] CHEN C,WU Q,WAN Z,et al. Mildly processed chitin used in one-component drinking straws and single use materials: strength, biodegradability and recyclability[J]. Chemical Engineering Journal,2022,442:136173. [3] CRUMP D,SHARIN T,CHIU S,et al. In vitro screening of 21 bisphenol A replacement alternatives: compared with bisphenol A, the majority of alternatives are more cytotoxic and dysregulate more genes in avian hepatocytes[J]. Environmental Toxicology and Chemistry,2021,40(7):2024-2031. [4] ROCHESTER J R. Bisphenol A and human health: a review of the literature[J]. Reproductive Toxicology,2013,42:132-155. [5] de LIMA H H C,LLOP M E G,DOS SANTOS MANIEZZO R,et al. Enhanced removal of bisphenol a using pine-fruit shell-derived hydrochars: adsorption mechanisms and reusability[J]. Journal of Hazardous Materials,2021,416:126167. [6] FRANKOWSKI R,ZGOŁA-GRZEŚKOWIAK A,SMUŁEK W,et al. Removal of bisphenol A and its potential substitutes by biodegradation[J]. Applied Biochemistry and Biotechnology,2020,191(3):1100-1110. [7] 王燚凡,佘少桦,孙传智,等.超薄硫掺杂石墨相氮化碳纳米片光催化降解双酚A[J].环境科学研究,34(12):2859-2866. [8] 吴梦怡,龙昕,高丛浩,等.碳纳米管掺杂PbO2复合电极的制备及其催化氧化双酚A[J].环境工程.2021, 39(4):50-56. [9] LI Z Y,WANG F,ZHANG Y M,et al. Activation of peroxymonosulfate by CuFe2O4-CoFe2O4 composite catalyst for efficient bisphenol a degradation: synthesis, catalytic mechanism and products toxicity assessment[J]. Chemical Engineering Journal,2021,423:130093. [10] YANG Y,BANERJEE G,BRUDVIG G W,et al. Oxidation of organic compounds in water by unactivated peroxymonosulfate[J]. Environmental Science & Technology,2018,52(10):5911-5919. [11] 徐睿,杨威,杨哲,等.膨胀石墨负载氧化铜活化过硫酸盐用于降解盐酸四环素[J].环境工程,2020, 38(2):48-54. [12] LIU N,LU N,YU H T,et al. Degradation of aqueous bisphenol A in the CoCN/Vis/PMS system: catalyst design, reaction kinetic and mechanism analysis[J]. Chemical Engineering Journal,2021,407:127228. [13] WANG Z,QIU W,PANG S Y,et al. Further understanding the involvement of Fe(Ⅳ) in peroxydisulfate and peroxymonosulfate activation by Fe(Ⅱ) for oxidative water treatment[J]. Chemical Engineering Journal,2019,371:842-847. [14] WANG Y,WU Y,YU Y F,et al. Natural polyphenols enhanced the Cu(Ⅱ)/peroxymonosulfate (PMS) oxidation: the contribution of Cu(Ⅲ) and HO·[J]. Water Research,2020,186:116326. [15] OH W D,DONG Z L,RONN G,et al. Surface-active bismuth ferrite as superior peroxymonosulfate activator for aqueous sulfamethoxazole removal: performance, mechanism and quantification of sulfate radical[J]. Journal of Hazardous Materials,2017,325:71-81. [16] BAO Y P,LEE W J,GUAN C T,et al. Highly efficient activation of peroxymonosulfate by bismuth oxybromide for sulfamethoxazole degradation under ambient conditions: synthesis, performance, kinetics and mechanisms[J]. Separation and Purification Technology,2021,276:119203. [17] 吴德勇,苏积珊.可见光激发Bi2MoO6活化PMS降解盐酸四环素[J].硅酸盐通报,2021, 40(8):2755-2762. [18] HU H,KONG W G,WANG J,et al. Engineering 2D compressed layered g-C3N4 nanosheets by the intercalation of BiVO4-Bi2WO6 composites for boosting photocatalytic activities[J]. Applied Surface Science,2021,557:149796. [19] WANG F,LAI Y X,FANG Q L,et al. Facile fabricate of novel Co(OH)F@MXenes catalysts and their catalytic activity on bisphenol a by peroxymonosulfate activation: the reaction kinetics and mechanism[J]. Applied Catalysis B: Environmental,2020,262:118099. [20] CUI C,GUO R H,XIAO H Y,et al. Bi2WO6/Nb2CTx MXene hybrid nanosheets with enhanced visible-light-driven photocatalytic activity for organic pollutants degradation[J]. Applied Surface Science,2020,505:144595. [21] LI R Y,ZHANG L B,SHI L,et al. MXene Ti3C2: an effective 2D light-to-heat conversion material[J]. ACS Nano,2017,11(4):3752-3759. [22] CAI T,WANG L L,LIU Y T,et al. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance[J]. Applied Catalysis B: Environmental,2018,239:545-554. [23] HOU Y D,LAURSEN A B,ZHANG J S,et al. Layered nanojunctions for hydrogen-evolution catalysis[J]. Angewandte Chemie International Edition,2013,52(13):3621-3625. [24] NAGUIB M,KURTOGLU M,PRESSER V,et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. [25] CHEN C C,WANG Y R,WU Q J,et al. Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors[J]. Chemical Engineering Journal,2020,400:125876. [26] SAYED M,KHAN J A,SHAH L A,et al. Solar light responsive poly(vinyl alcohol)-assisted hydrothermal synthesis of immobilized TiO2/Ti film with the addition of peroxymonosulfate for photocatalytic degradation of ciprofloxacin in aqueous media: a mechanistic approach[J]. The Journal of Physical Chemistry C,2018,122(1):406-421. [27] CHEN Z Q,WANG L Y,XU H D,et al. Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A[J]. Chemical Engineering Journal,2020,389:124345. [28] SOUFAN M,DEBORDE M,DELMONT A,et al. Aqueous chlorination of carbamazepine: kinetic study and transformation product identification[J]. Water Research,2013,47(14):5076-5087. [29] HUANG Y M,LI G,LI M Z,et al. Kelp-derived N-doped biochar activated peroxymonosulfate for ofloxacin degradation[J]. Science of the Total Environment,2021,754:141999. [30] REN J,JIANG L S,LI Y,et al. Cobalt doped bismuth oxysulfide with abundant oxygen vacancies towards tetracycline degradation through peroxymonosulfate activation[J]. Separation and Purification Technology,2021,275:119100. [31] CHEN F,HUANG G X,YAO F B,et al. Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: performance and mechanism[J]. Water Research,2020,173:115559. [32] LIN K A,ZHANG Z Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal,2017,313:1320-1327. [33] ZHANG L S,WANG H L,CHEN Z G,et al. Bi2WO6 micro/nano-structures: synthesis, modifications and visible-light-driven photocatalytic applications[J]. Applied Catalysis B: Environmental,2011,106(1/2):1-13. [34] ZHANG C,ZHU Y. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts[J]. Chemistry of Materials,2005,17(13):3537-3545. [35] ZHENG H S,GUO W Q,LI S,et al. Surfactant (CTAB) assisted flower-like Bi2WO6 through hydrothermal method: unintentional bromide ion doping and photocatalytic activity[J]. Catalysis Communications,2017,88:68-72. [36] MISSAOUI K,OUERTANI R,JBIRA E,et al. Morphological influence of BiVO4 nanostructures on peroxymonosulfate activation for highly efficient catalytic degradation of rhodamine B[J]. Environmental Science and Pollution Research,2021,28(37):52236-52246.
点击查看大图
计量
- 文章访问数: 266
- HTML全文浏览量: 34
- PDF下载量: 20
- 被引次数: 0