中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi2WO6@MXenes-NS活化过单硫酸盐降解双酚A

许振扬 方庆路 顾雯雯 李志颖 张一梅 王飞

许振扬, 方庆路, 顾雯雯, 李志颖, 张一梅, 王飞. Bi2WO6@MXenes-NS活化过单硫酸盐降解双酚A[J]. 环境工程, 2023, 41(4): 10-17,62. doi: 10.13205/j.hjgc.202304002
引用本文: 许振扬, 方庆路, 顾雯雯, 李志颖, 张一梅, 王飞. Bi2WO6@MXenes-NS活化过单硫酸盐降解双酚A[J]. 环境工程, 2023, 41(4): 10-17,62. doi: 10.13205/j.hjgc.202304002
XU Zhenyang, FANG Qinglu, GU Wenwen, LI Zhiying, ZHANG Yimei, WANG Fei. PERFORMANCE OF Bi2WO6@MXenes-NS ACTIVATED PERMONOSULFATE IN DEGRADING BISPHENOL A[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 10-17,62. doi: 10.13205/j.hjgc.202304002
Citation: XU Zhenyang, FANG Qinglu, GU Wenwen, LI Zhiying, ZHANG Yimei, WANG Fei. PERFORMANCE OF Bi2WO6@MXenes-NS ACTIVATED PERMONOSULFATE IN DEGRADING BISPHENOL A[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 10-17,62. doi: 10.13205/j.hjgc.202304002

Bi2WO6@MXenes-NS活化过单硫酸盐降解双酚A

doi: 10.13205/j.hjgc.202304002
基金项目: 

中国国家科技重点研发计划(2017YFB0603400)

苏州市科技项目(SYG201913,SYG201914)

国家自然科学基金(51878272)

详细信息
    作者简介:

    许振扬(1998-),男,硕士研究生,主要研究方向为水处理技术。525827343@qq.com

    通讯作者:

    张一梅(1982-),女,教授,主要研究方向为环境风险评价和环境修复技术。zhangym@ncepu.edu.cn

    王飞(1991-),男,博士研究生,主要研究方向为催化材料的合成与应用。1548340673@qq.com

PERFORMANCE OF Bi2WO6@MXenes-NS ACTIVATED PERMONOSULFATE IN DEGRADING BISPHENOL A

  • 摘要: 为解决水环境中内分泌干扰物的去除难题,采用水热法合成Bi2WO6@MXenes-NS(BM-NS)复合催化剂,通过活化过单硫酸盐(PMS)降解双酚A (BPA)。利用SEM、TEM及XRD对所制备催化剂的形貌和晶体结构进行表征,考察了不同催化剂体系、PMS浓度,溶液pH和共存离子等因素对BPA降解性能的影响。结果表明:当MXenes-NS添加量(质量分数)为0.5%,催化剂浓度为1 g/L,PMS浓度为0.3 g/L,溶液pH为3.03时,BM-NS/PMS体系具有较强的BPA降解性能,120 min内去除率达到85.3%。溶液中无机阴离子对BPA去除率的影响顺序为Cl-2PO-42-4-3≈NO-3。催化剂经过4次循环实验后,BPA去除率仍保持在70.1%。自由基猝灭实验结果表明,SO-4·是主要的活性自由基。结合LC-MS,提出了BPA可能的降解途径。研究表明,制备的BM-NS催化剂在活化PMS降解BPA方面具有良好的应用前景。
  • [1] SUN P P,LIU X M,ZHANG M H,et al. Sorption and leaching behaviors between aged MPs and BPA in water: the role of BPA binding modes within plastic matrix[J]. Water Research,2021,195:116956.
    [2] CHEN C,WU Q,WAN Z,et al. Mildly processed chitin used in one-component drinking straws and single use materials: strength, biodegradability and recyclability[J]. Chemical Engineering Journal,2022,442:136173.
    [3] CRUMP D,SHARIN T,CHIU S,et al. In vitro screening of 21 bisphenol A replacement alternatives: compared with bisphenol A, the majority of alternatives are more cytotoxic and dysregulate more genes in avian hepatocytes[J]. Environmental Toxicology and Chemistry,2021,40(7):2024-2031.
    [4] ROCHESTER J R. Bisphenol A and human health: a review of the literature[J]. Reproductive Toxicology,2013,42:132-155.
    [5] de LIMA H H C,LLOP M E G,DOS SANTOS MANIEZZO R,et al. Enhanced removal of bisphenol a using pine-fruit shell-derived hydrochars: adsorption mechanisms and reusability[J]. Journal of Hazardous Materials,2021,416:126167.
    [6] FRANKOWSKI R,ZGOŁA-GRZEŚKOWIAK A,SMUŁEK W,et al. Removal of bisphenol A and its potential substitutes by biodegradation[J]. Applied Biochemistry and Biotechnology,2020,191(3):1100-1110.
    [7] 王燚凡,佘少桦,孙传智,等.超薄硫掺杂石墨相氮化碳纳米片光催化降解双酚A[J].环境科学研究,34(12):2859-2866.
    [8] 吴梦怡,龙昕,高丛浩,等.碳纳米管掺杂PbO2复合电极的制备及其催化氧化双酚A[J].环境工程.2021, 39(4):50-56.
    [9] LI Z Y,WANG F,ZHANG Y M,et al. Activation of peroxymonosulfate by CuFe2O4-CoFe2O4 composite catalyst for efficient bisphenol a degradation: synthesis, catalytic mechanism and products toxicity assessment[J]. Chemical Engineering Journal,2021,423:130093.
    [10] YANG Y,BANERJEE G,BRUDVIG G W,et al. Oxidation of organic compounds in water by unactivated peroxymonosulfate[J]. Environmental Science & Technology,2018,52(10):5911-5919.
    [11] 徐睿,杨威,杨哲,等.膨胀石墨负载氧化铜活化过硫酸盐用于降解盐酸四环素[J].环境工程,2020, 38(2):48-54.
    [12] LIU N,LU N,YU H T,et al. Degradation of aqueous bisphenol A in the CoCN/Vis/PMS system: catalyst design, reaction kinetic and mechanism analysis[J]. Chemical Engineering Journal,2021,407:127228.
    [13] WANG Z,QIU W,PANG S Y,et al. Further understanding the involvement of Fe(Ⅳ) in peroxydisulfate and peroxymonosulfate activation by Fe(Ⅱ) for oxidative water treatment[J]. Chemical Engineering Journal,2019,371:842-847.
    [14] WANG Y,WU Y,YU Y F,et al. Natural polyphenols enhanced the Cu(Ⅱ)/peroxymonosulfate (PMS) oxidation: the contribution of Cu(Ⅲ) and HO·[J]. Water Research,2020,186:116326.
    [15] OH W D,DONG Z L,RONN G,et al. Surface-active bismuth ferrite as superior peroxymonosulfate activator for aqueous sulfamethoxazole removal: performance, mechanism and quantification of sulfate radical[J]. Journal of Hazardous Materials,2017,325:71-81.
    [16] BAO Y P,LEE W J,GUAN C T,et al. Highly efficient activation of peroxymonosulfate by bismuth oxybromide for sulfamethoxazole degradation under ambient conditions: synthesis, performance, kinetics and mechanisms[J]. Separation and Purification Technology,2021,276:119203.
    [17] 吴德勇,苏积珊.可见光激发Bi2MoO6活化PMS降解盐酸四环素[J].硅酸盐通报,2021, 40(8):2755-2762.
    [18] HU H,KONG W G,WANG J,et al. Engineering 2D compressed layered g-C3N4 nanosheets by the intercalation of BiVO4-Bi2WO6 composites for boosting photocatalytic activities[J]. Applied Surface Science,2021,557:149796.
    [19] WANG F,LAI Y X,FANG Q L,et al. Facile fabricate of novel Co(OH)F@MXenes catalysts and their catalytic activity on bisphenol a by peroxymonosulfate activation: the reaction kinetics and mechanism[J]. Applied Catalysis B: Environmental,2020,262:118099.
    [20] CUI C,GUO R H,XIAO H Y,et al. Bi2WO6/Nb2CTx MXene hybrid nanosheets with enhanced visible-light-driven photocatalytic activity for organic pollutants degradation[J]. Applied Surface Science,2020,505:144595.
    [21] LI R Y,ZHANG L B,SHI L,et al. MXene Ti3C2: an effective 2D light-to-heat conversion material[J]. ACS Nano,2017,11(4):3752-3759.
    [22] CAI T,WANG L L,LIU Y T,et al. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance[J]. Applied Catalysis B: Environmental,2018,239:545-554.
    [23] HOU Y D,LAURSEN A B,ZHANG J S,et al. Layered nanojunctions for hydrogen-evolution catalysis[J]. Angewandte Chemie International Edition,2013,52(13):3621-3625.
    [24] NAGUIB M,KURTOGLU M,PRESSER V,et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. [25] CHEN C C,WANG Y R,WU Q J,et al. Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors[J]. Chemical Engineering Journal,2020,400:125876. [26] SAYED M,KHAN J A,SHAH L A,et al. Solar light responsive poly(vinyl alcohol)-assisted hydrothermal synthesis of immobilized TiO2/Ti film with the addition of peroxymonosulfate for photocatalytic degradation of ciprofloxacin in aqueous media: a mechanistic approach[J]. The Journal of Physical Chemistry C,2018,122(1):406-421. [27] CHEN Z Q,WANG L Y,XU H D,et al. Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A[J]. Chemical Engineering Journal,2020,389:124345. [28] SOUFAN M,DEBORDE M,DELMONT A,et al. Aqueous chlorination of carbamazepine: kinetic study and transformation product identification[J]. Water Research,2013,47(14):5076-5087. [29] HUANG Y M,LI G,LI M Z,et al. Kelp-derived N-doped biochar activated peroxymonosulfate for ofloxacin degradation[J]. Science of the Total Environment,2021,754:141999. [30] REN J,JIANG L S,LI Y,et al. Cobalt doped bismuth oxysulfide with abundant oxygen vacancies towards tetracycline degradation through peroxymonosulfate activation[J]. Separation and Purification Technology,2021,275:119100. [31] CHEN F,HUANG G X,YAO F B,et al. Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: performance and mechanism[J]. Water Research,2020,173:115559. [32] LIN K A,ZHANG Z Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal,2017,313:1320-1327. [33] ZHANG L S,WANG H L,CHEN Z G,et al. Bi2WO6 micro/nano-structures: synthesis, modifications and visible-light-driven photocatalytic applications[J]. Applied Catalysis B: Environmental,2011,106(1/2):1-13. [34] ZHANG C,ZHU Y. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts[J]. Chemistry of Materials,2005,17(13):3537-3545. [35] ZHENG H S,GUO W Q,LI S,et al. Surfactant (CTAB) assisted flower-like Bi2WO6 through hydrothermal method: unintentional bromide ion doping and photocatalytic activity[J]. Catalysis Communications,2017,88:68-72. [36] MISSAOUI K,OUERTANI R,JBIRA E,et al. Morphological influence of BiVO4 nanostructures on peroxymonosulfate activation for highly efficient catalytic degradation of rhodamine B[J]. Environmental Science and Pollution Research,2021,28(37):52236-52246.
  • 加载中
计量
  • 文章访问数:  266
  • HTML全文浏览量:  34
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 网络出版日期:  2023-05-26
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回