CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可见光光催化-生物法直接耦合降解环丙沙星废水的行为及生物响应机制

张智博 董怡琳 李静超 陈昕雨 任芝军

张智博, 董怡琳, 李静超, 陈昕雨, 任芝军. 可见光光催化-生物法直接耦合降解环丙沙星废水的行为及生物响应机制[J]. 环境工程, 2023, 41(4): 18-25. doi: 10.13205/j.hjgc.202304003
引用本文: 张智博, 董怡琳, 李静超, 陈昕雨, 任芝军. 可见光光催化-生物法直接耦合降解环丙沙星废水的行为及生物响应机制[J]. 环境工程, 2023, 41(4): 18-25. doi: 10.13205/j.hjgc.202304003
ZHANG Zhibo, DONG Yilin, LI Jingchao, CHEN Xinyu, REN Zhijun. DEGRADATION BEHAVIOR AND BIOLOGICAL RESPONSE OF CIPROFLOXACIN WASTEWATER BY INTIMATELY COUPLED PHOTOCATALYSIS AND BIODEGRADATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 18-25. doi: 10.13205/j.hjgc.202304003
Citation: ZHANG Zhibo, DONG Yilin, LI Jingchao, CHEN Xinyu, REN Zhijun. DEGRADATION BEHAVIOR AND BIOLOGICAL RESPONSE OF CIPROFLOXACIN WASTEWATER BY INTIMATELY COUPLED PHOTOCATALYSIS AND BIODEGRADATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 18-25. doi: 10.13205/j.hjgc.202304003

可见光光催化-生物法直接耦合降解环丙沙星废水的行为及生物响应机制

doi: 10.13205/j.hjgc.202304003
基金项目: 

国家自然科学基金资助项目(51779068)

河北省高校科技攻关项目(ZD2020149)

河北省自然科学基金资助项目(B2019202078)

详细信息
    作者简介:

    张智博(2001-),男,本科,主要研究方向为水污染控制。bob_zhang@163.com;董怡琳(1995-),女,博士研究生,主要研究方向为水污染控制。1014399640@qq.com

    通讯作者:

    任芝军(1976-),男,研究员,博士研究生,主要研究方向为水污染控制。renzhijun2003@126.com

DEGRADATION BEHAVIOR AND BIOLOGICAL RESPONSE OF CIPROFLOXACIN WASTEWATER BY INTIMATELY COUPLED PHOTOCATALYSIS AND BIODEGRADATION

  • 摘要: 考察了光催化-生物降解直接耦合体系(ICPB)对环丙沙星(CIP)的降解行为,着重探讨了不同反应条件对ICPB体系降解CIP效率的影响及ICPB中生物响应与关键作用。结果表明:ICPB反应体系中,载体投加量为30%,光照强度为50 klux,反应初始pH值为7,ρ(DO)为5~6 mg/L时,CIP去除效果最佳,并可在较宽CIP浓度范围内(5~30 mg/L)具有较高的去除率,且其降解效率(90%)明显优于单独光催化(80%)和单独生物降解(50%)。生物膜观察结果阐明,ICPB载体内部生物膜未受到显著伤害,并且微生物通过利用CIP光催化氧化形成的小分子中间产物存活并对这些产物进行进一步生物降解,从而达到完全矿化。ICPB中生物膜通过Ferruginibacter、Clostridium、Stenotrophomonas和Comamonas等菌属的富集来适应环境胁迫,同时生物群落结构的演替对于微生物存活有着重要意义。
  • [1] ZHANG Y J, BOYD S A, TEPPEN B J, et al. Organic acids enhance bioavailability of tetracycline in water to Escherichia coli for uptake and expression of antibiotic resistance[J]. Water Research, 2014, 65: 98-106.
    [2] OBEROI A S, JIA Y Y, ZHANG H Q, et al. Insights into the fate and removal of antibiotics in engineered biological treatment systems: a critical review[J]. Environmental Science & Technology, American Chemical Society, 2019, 53 (13): 7234-7264.
    [3] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, American Chemical Society, 2015, 49 (11): 6772-6782.
    [4] MOVASAGHI Z, YAN B, NIU C. Adsorption of ciprofloxacin from water by pretreated oat hulls: equilibrium, kinetic, and thermodynamic studies[J]. Industrial Crops and Products, 2019, 127: 237-250.
    [5] JOHNSON A C, KELLER V, DUMONT E, et al. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers[J]. Science of the Total Environment, 2015, 511: 747-755.
    [6] SENTA I, TERZIC S, AHEL M. Occurrence and fate of dissolved and particulate antimicrobials in municipal wastewater treatment[J]. Water Research, 2013, 47 (2): 705-714.
    [7] JANECKO N, POKLUDOVA L, BLAHOVA J, et al. Implications of fluoroquinolone contamination for the aquatic environment-a review[J]. Environmental Toxicology and Chemistry, 2016, 35 (11): 2647-2656.
    [8] JIA Y Y, KHANAL S K, SHU H Y, et al. Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: mechanism and pathways[J]. Water Research, 2018, 136: 64-74.
    [9] LI G Z, PARK S, KANG D W, et al. 2,4,5-Trichlorophenol degradation using a novel TiO2-coated biofilm carrier: roles of adsorption, photocatalysis, and biodegradation[J]. Environmental Science & Technology, American Chemical Society, 2011, 45 (19): 8359-8367.
    [10] LI G Z, PARK S, RITTMANN B E. Developing an efficient TiO2-coated biofilm carrier for intimate coupling of photocatalysis and biodegradation[J]. Water Research, 2012, 46 (19): 6489-6496.
    [11] MARSOLEK M D, TORRES C I, HAUSNER M, et al. Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor[J]. Biotechnology and Bioengineering, 2008, 101 (1): 83-92.
    [12] DONG Y L, XU D Y, WANG Q W, et al. Tailoring the electronic structure of ultrathin 2D Bi3O4Cl sheets by boron doping for enhanced visible light environmental remediation[J]. Applied Surface Science, 2021, 542: 148521.
    [13] 肖伽励, 周龙生, 王元有,等. Mg-Al LDH的制备及Mg-Al LDH/H2O2体系降解水中环丙沙星的研究[J]. 化学研究与应用, 2021, 33(4): 755-760.
    [14] 郭雲. 光催化与生物降解近场耦合协同作用强化方法与机制[D]. 长春:吉林大学, 2020.
    [15] 刘晓伟, 谢丹平, 李开明, 等. 溶解氧变化对底泥酶活性及微生物多样性的影响[J]. 环境科学与技术, 2013, 36(6): 6-11.
    [16] FROMM H J. The effect of temperature and ph on enzyme activity[G]. Initial Rate Enzyme Kinetics. Berlin, Heidelberg: Springer, 1975: 201-235.
    [17] 王旭,陈熙,徐新阳,等.CQDs/TiO2复合材料的制备及光催化降解抗生素[J].环境化学,2022,41(12):3876-3885.
    [18] 段飞阳, 周安宁, 陈福欣, 等. 石墨相氮化碳纳米片的可控制备及光催化性能[J]. 硅酸盐学报, 2021, 49(1): 2053-2060.
    [19] ZHANG X X, LI R P, JIA M K, et al. Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: a direct hole oxidation pathway[J]. Chemical Engineering Journal, 2015, 274: 290-297.
    [20] 熊厚锋. 可见光催化氧化—生物降解直接耦合技术降解四环素废水的效能与作用机制[D]. 长春:吉林大学, 2017.
    [21] XIE Z J, FENG Y P, WANG F L, et al. Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible light photocatalytic activity for the degradation of tetracycline[J]. Applied Catalysis B: Environmental, 2018, 229: 96-104.
    [22] ZHANG B, JI M, QIU Z G, et al. Microbial population dynamics during sludge granulation in an anaerobic-aerobic biological phosphorus removal system[J]. Bioresource Technology, 2011, 102 (3): 2474-2480.
    [23] LIU Y Q, KONG Y H, ZHANG R, et al. Microbial population dynamics of granular aerobic sequencing batch reactors during start-up and steady state periods[J]. Water Science and Technology, 2010, 62 (6): 1281-1287.
    [24] SOLTAN MOHAMMADI N, MAFAKHERI S, ABDALI N, et al. Identification and characterization of the channel-forming protein in the cell wall of Corynebacterium amycolatum[J]. BBA-Biomembranes, 2013, 1828 (11): 2574-2582.
    [25] WALSH F, DUFFY B. The culturable soil antibiotic resistome: a community of Multi-Drug resistant bacteria[J]. PLoS ONE, 2013, 8 (6): e65567.
    [26] OLIVARES J, BERNARDINI A, GARCIA-LEON G, et al. The intrinsic resistome of bacterial pathogens[J]. Frontiers in Microbiology, 2013, 4: 103-112.
    [27] WOJCIESZYŃSKA D, GUZIK U, GREŃ I, et al. Induction of aromatic ring: cleavage dioxygenases in Stenotrophomonas maltophilia strain KB2 in cometabolic systems[J]. World J Microbiol Biotechnol, 2011, 27 (4): 805-811.
    [28] HUANG Z, NI B, JIANG C Y, et al. Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds in Comamonas testosteroni[J]. Mol Microbiol, 2016, 101 (2): 224-237.
  • 加载中
计量
  • 文章访问数:  330
  • HTML全文浏览量:  21
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-01
  • 网络出版日期:  2023-05-26
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回