CHARACTERISTICS AND SOURCE ANALYSIS OF HALOCARBONS IN SUMMER AT HIGH ALTITUDE BACKGROUND SITE OF NAMCO, TIBETAN PLATEAU
-
摘要: 采用预浓缩仪-气相色谱/质谱(GC/MS)联用方法测定了2020年夏季青藏高原高海拔背景站点纳木措(海拔4730 m)的卤代烃浓度,结合后向轨迹模型分析了采样点卤代烃传输轨迹及潜在源区域。结果表明:纳木措站大气中主要卤代烃为氯甲烷(3.81×10-10)、一氟三氯甲烷(CFC-11,2.32×10-10)、四氯化碳(9.30×10-11)、三氯三氟乙烷(CFC-113,8.60×10-11)和二氯甲烷(6.80×10-11);纳木措站的氟氯烃化合物(CFCs)浓度在全球范围其他背景站点中处于较低水平。采样点CFC-11和CFC-113浓度变化之间呈显著相关(r=0.928,P<0.01),分析认为是受大气本底传输的影响;而其浓度的变化幅度较大,与现有其他高海拔背景站点特征一致,大于平原地区两者浓度变化幅度。除CFC-11和CFC-113外,其他卤代烃化合物日变化幅度均较小(2%~12%),无明显昼夜变化特征。后向轨迹模型分析结果显示,四氯化碳浓度可能受印度等周边地区传输的影响,采样期间纳木措站卤代烃浓度主要受亚洲西部影响。Abstract: In order to study the concentration and variation characteristics of halocarbon in the atmosphere over the Tibetan Plateau, the concentration variation of halocarbon at background site Namco station (4730m a. s. l.) in the summer of 2020 was measured by preconcentrator-GC/MS method. The influence of transport and potential source area on halocarbons was analyzed by using the HYSPLIT model. The results showed that the main halocarbons in the atmosphere of Namco station were methane chloride (3.81×10-10), CFC-11 (2.32×10-10), CFC-113 (8.60×10-11), tetrachloromethane (9.30×10-11) and dichloromethane (6.80×10-11). The concentrations of chlorofluorocarbons (CFCs) at Namco were close to or lower than other global background values. There was no distinct diurnal variation in the concentration of main halocarbon compounds. The concentrations of CFC-11 and CFC-113 were significantly correlated (r=0.928, P<0.01) and might be affected by transfer of atmospheric background. The wide variation range of CFC-11 and CFC-113 in Namco station was consistent with the characteristics of other high-altitude background sites, while it was obviously greater them the results in plain areas. Except for CFC-11 and CFC-13, the diurnal variation amplitude of other halocarbons was small, without obvious diurnal variation characteristics. The results of the HYSPLIT model indicated that the concentration of tetrachloromethane might be influenced by the transport of the surrounding area, the concentration of halocarbon at Namco station was mainly affected by western Asia during the sampling period, and the concentration of chloromethane might be influenced by the surrounding marine natural sources.
-
Key words:
- Tibetan Plateau /
- background site /
- halocarbons /
- sources analysis /
- regional transport
-
[1] 唐孝炎,张远航,邵敏. 大气环境化学[M]. 2版. 北京: 高等教育出版社,2006. [2] STURROCK G A, ETHERIDGE D M, TRUDINGER C M, et al. Atmospheric histories of halocarbons from analysis of Antarctic firn air: major montreal protocol species[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D24): 1-14. [3] LAUBE J C, MOHD HANIF N, MARTINERIE P, et al. Tropospheric observations of CFC-114 and CFC-114a with a focus on long-term trends and emissions[J]. Atmospheric Chemistry Physics, 2016, 16(23): 15347-15358. [4] YANG M M, YANG F C, LI H L, et al. CFCs measurements at high altitudes in northern China during 2017—2018: concentrations and potential emission source regions[J]. Science of the Total Environment, 2021, 754:142290. [5] 胡永云. 南极臭氧洞的发现[J]. 科学通报,2020,65(18):1797-1803. [6] 张靖,邵敏,苏芳. 北京市大气中挥发性有机物的组成特征[J]. 环境科学研究,2004,17(5): 1-5. [7] 卢学强,韩萌,冉靓,等. 天津中心城区夏季非甲烷有机化合物组成特征及其臭氧产生潜力分析[J]. 环境科学学报,2011,37(2): 373-380. [8] WMO (World Meteorological Organization). Scientific assessment of ozone depletion: 2018[R]. Geneva, 2019. [9] TANG J H, CHAN L Y, CHANG C C, et al. Characteristics and sources of non-methane hydrocarbons in background atmospheres of eastern, southwestern, and southern China[J]. Journal of Geophysical Research Atmospheres, 2009, 114:D03304. [10] LABORATORY N E S R. The NOAA ozone depleting gas index: guiding recovery of the ozone layer[R]. Boulder, USA: NOAA Earth System Research Laboratory, 2021. [11] PRINN R G, WEISS R F, FRASER P J, et al. A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE[J]. Journal of Geophysical Research Atmospheres, 2000, 105(D14): 17751-17792. [12] ZHANG F, ZHOU L X, YAO B, et al. Analysis of 3-year observations of CFC-11, CFC-12 and CFC-113 from a semi-rural site in China[J]. Atmospheric Environment, 2010, 44(35): 4454-4462. [13] CHANG C C, LAI C H, WANG C H, et al. Variability of ozone depleting substances as an indication of emissions in the Pearl River Delta, China[J]. Atmospheric Environment, 2008, 42(29): 6973-6981. [14] FANG X K, WU J, XU J H, et al. Ambient mixing ratios of chlorofluorocarbons, hydrochlorofluorocarbons and hydrofluorocarbons in 46 Chinese cities[J]. Atmospheric Environment, 2012, 54: 387-392. [15] WU J, FANG X K, XU W Y, et al. Chlorofluorocarbons, hydrochlorofluorocarbons, and hydrofluorocarbons in the atmosphere of four Chinese cities[J]. Atmospheric Environment, 2013, 75(Aug.): 83-91. [16] YIN X F, KANG S C, FOY B D, et al. Impacts of Indian summer monsoon and stratospheric intrusion on air pollutants in the inland Tibetan Plateau[J]. Geoscience Frontiers, 2021,12(6):101255. [17] 柴磊,王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展,2022,37(2): 187-201. [18] PARK M, RANDE L W J, GETTELMAN A, et al. Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers[J]. Journal of Geophysical Research Atmospheres, 2007, 112(d16): D16309. [19] ZHANG J Q, XIA X G, SHI H R, et al. Radiation and aerosol measurements over the Tibetan Plateau during the Asian summer monsoon period[J]. Atmospheric Pollution Research, 2020, 11(9): 1543-1551. [20] RANDEL W J, PARK M, EMMONS L, et al. Asian monsoon transport to the stratosphere[J]. Science, 2010, 328(5978): 611-613. [21] VERNIER J P, FAIRLIE T D, NATARAJAN M, et al. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution[J]. Journal of Geophysical Research: Atmospheres, 2015, 120: 1608-1619. [22] 卞建春,王庚辰,陈洪滨,等. 2003年12月青藏高原上空出现微型臭氧洞[J]. 科学通报,2006,51(5): 606-609. [23] 中国科学院青藏高原综合科学考察队. 西藏河流与湖泊[M]. 北京: 科学出版社,1984. [24] 吕雅琼,马耀明,李茂善,等. 纳木措湖夏季典型大气边界层特征的数值模拟[J]. 高原气象,2008,27(4): 733-740. [25] YIN X F, KANG S C, FOY B, et al. Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness[J]. Atmospheric Chemistry & Physics, 2017, 17(18): 11293-11311. [26] MAO T, WANG Y S, XU H H, et al. A study of the atmospheric VOCs of Mount Tai in June 2006[J]. Atmospheric Environment, 2009, 43(15): 2503-2508. [27] YANG M, YAN W, CHEN J, et al. Aromatic hydrocarbons and halocarbons at a mountaintop in southern China[J]. Aerosol Air Quality Research, 2016, 16(3): 478-491. [28] ZHANG J K, SUN Y, WU F K, et al. The characteristics, seasonal variation and source apportionment of VOCs at Gongga Mountain, China[J]. Atmospheric Environment, 2014, 88: 297-305. [29] 吴方堃,孙杰,余晔,等. 长白山背景站大气VOCs浓度变化特征及来源分析[J]. 环境科学,2016,37(9): 3308-3314. [30] MONTZKA S A, REIMANN S, ENGEL A, et al. Ozone-depleting substances (ODSs) and related chemicals, chapter 1[M]. Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project-Report No 52. Geneva;World Meteorological Organization, 2011. [31] FRASER P J, DUNSE B L, MANNING A J, et al. Australian carbon tetrachloride emissions in a global context[J]. Environmental Chemistry, 2014, 11(1): 77-88. [32] 白阳,白志鹏,李伟. 青藏高原背景站大气VOCs浓度变化特征及来源分析[J]. 环境科学学报,2016,36(6): 2180-2186. [33] OU-YANG C F, CHANG C C, WANG J L, et al. Characteristics of summertime volatile organic compounds in the lower free troposphere: background measurements at Mt. Fuji[J]. Aerosol Air Quality Research, 2017, 17(12): 3037-3051. [34] 张芳,王新明,李龙凤,等. 近年来珠三角地区大气中痕量氟氯烃(CFCs)的浓度水平与变化特征[J]. 地球与环境,2006,34(4): 19-24. [35] 孙学志,丹万,史烨弘. 北京市CFCs和CCl4的浓度水平与变化趋势[J]. 环境科学研究,2010,23(6): 674-679. [36] United Nations Environment Programme (UNEP). Handbook for the montreal protocol on substances that deplete the ozone layer[DB/OL]. https://ozone.unep.org/sites/default/files/Handbooks/MP-Handbook-2020-English.pdf.2020. [37] GAO X, YU Q, GU Q, et al. Indoor air pollution from solid biomass fuels combustion in rural agricultural area of Tibet, China[J]. Indoor Air, 2009, 19(3): 198-205. [38] KANG S C, LI C L, WANG F Y, et al. Total suspended particulate matter and toxic elements indoors during cooking with Yak Dung[J]. Atmospheric Environment, 2009, 43(27): 4243-4246. [39] LIU G, LUCAS M, SHEN L. Rural household energy consumption and its impacts on eco-environment in Tibet: taking Taktse county as an example[J]. Renewable Sustainable Energy Reviews, 2008, 12(7): 1890-1908. [40] ZHANG Y, KONG S F, ZHENG H, et al. Real-time emission of volatile organic compounds from cow dung combustion[J]. China Environmental Science, 2020, 40(5): 79-86. [41] KUMAR A, SINGH D, KUMAR K, et al. Distribution of VOCs in urban and rural atmospheres of subtropical India: temporal variation, source attribution, ratios, OFP and risk assessment[J]. Science of the Total Environment, 2018, 613/614: 492-501. [42] CONG Z, KANG S, KAWAMURA K, et al. Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources[J]. Atmospheric Chemistry and Physics, 2015, 15(3): 1573-1584. [43] ENGLING G, ZHANG Y N, CHAN C Y, et al. Characterization and sources of aerosol particles over the southeastern Tibetan Plateau during the Southeast Asia biomass-burning season[J]. Tellus, 2011, 63(1): 117-128. [44] KUMAR R, NAJA M, SATHEESH S K, et al. Influences of the springtime northern Indian biomass burning over the central Himalayas[J]. Journal of Geophysical Research, 2011, 116(D19): D19302. [45] SANG X F, ZHANG Z S, CHAN C, et al. Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau[J]. Atmospheric Environment, 2013, 78: 113-123. [46] 刘咸德,李军,赵越,等. 北京地区大气颗粒物污染的风向因素研究[J]. 中国环境科学,2010,30(1): 1-6. [47] DIMITRIOU K, KASSOMENOS P. Three year study of tropospheric ozone with back trajectories at a metropolitan and a medium scale urban area in Greece-Science Direct[J]. Science of the Total Environment, 2015, 502(502C): 493-501. [48] VELLINGIRI K, KIM K H, LIM J M, et al. Identification of nitrogen dioxide and ozone source regions for an urban area in Korea using back trajectory analysis[J]. Atmospheric Research, 2016, 176/177(Jul): 212-221. [49] SHARMA A, MANDAL T K, SHARMA S K, et al. Relationships of surface ozone with its precursors, particulate matter and meteorology over Delhi[J]. Journal of Atmospheric Chemistry, 2017, 74: 451-474. [50] SPARC. Lifetimes of Stratospheric Ozone-depleting Substances, Their Replacements, and Related Species[R]. 2013. [51] 陆小兰,杨桂朋,高先池. 氯甲烷的海洋生物地球化学研究[J]. 中国海洋大学学报(自然科学版),2006,36(6): 868-874. [52] 西藏自治区统计局. 西藏统计年鉴2020[M]. 北京:中国统计出版社, 2020.
点击查看大图
计量
- 文章访问数: 165
- HTML全文浏览量: 18
- PDF下载量: 13
- 被引次数: 0