SPATIOTEMPORAL CHARACTERISTICS ANALYSIS OF HEAVY-DUTY DIESEL TRUCK EMISSIONS BASED ON GPS DATA
-
摘要: 汽车污染已成为中国空气污染的重要来源,而重型柴油货车是汽车大气污染排放的主要贡献者。为揭示重型柴油货车的排放特征,基于高原地区云南省昆明市重型柴油货车GPS点数据,用Python语言提取重型柴油货车在各点轨迹段的平均速度、行驶里程等参数,采用机动车排放模型MOVES,模拟计算研究区域内HC、CO、NO<em>x、PM2.5污染物排放量,并通过ArcGIS进一步分析其时空分布特征。结果表明:2021年1月3日昆明市研究区域内重型柴油货车HC、CO、NO<em>x、PM2.5的排放量分别为11.7423,39.6386,102.2600,0.9192 kg;时间维度,重型柴油货车在2:00和22:00有明显的排放高峰,受路权及运输行业工作时间的影响;空间维度,排放的分布格局呈明显的空间异质性,受政策驱动的影响且与空间位置的布置密切相关,排放主要分布在汕昆高速、昆石高速及支路、立交交叉口处;区域内重型柴油货车小时平均速度、交通量与其小时排放量有密切关系。因此,可以针对重型柴油货车排放较高的时段和地区,采取必要的治理手段,深入开展污染防治行动,以减少排放,助力"十四五"规划和2035远景目标的实现。Abstract: Automobile pollution has become an important source of air pollution in China, and heavy-duty diesel trucks are the main contributors to automobile air pollution emissions. To reveal the emission characteristics of heavy-duty diesel trucks, based on the GPS point data of heavy-duty diesel trucks in Kunming, Yunnan Province, the average speed and mileage of heavy-duty diesel trucks in each point trajectory section were extracted by Python language. The vehicle emission model MOVES was used to simulate and calculate the emissions of HC, CO, NO<em>x and PM2.5 in the study area, and the spatiotemporal characteristics were further analyzed by ArcGIS. The results showed that the emissions of HC, CO, NO<em>x and PM2.5 of heavy diesel trucks in the study area of Kunming on January 3, 2021, were 11.7423 kg, 39.6386 kg, 102.2600 kg and 0.9192 kg, respectively. From the time point of view, heavy diesel truck emissions peaked at 2:00 and 22:00, affected by road rights and transportation industry working hours; in space, the distribution pattern of emissions showed obvious spatial heterogeneity, which was policy-driven and closely related to the layout of spatial location. Emissions were mainly distributed at Shankun Expressway, Kunshi Expressway, branches and interchange intersections. The hourly average speed and traffic volume of heavy diesel trucks in the region were closely related to their hourly emissions. Therefore, the relevant government departments should take necessary measures to control the pollution in periods and regions with high emissions of heavy-duty diesel trucks, and carry out in-depth pollution prevention and control actions to reduce emission and help achieve the 14th Five-Year Plan and the 2035 vision of China.
-
Key words:
- heavy-duty diesel trucks /
- MOVES /
- transportation emissions /
- GPS data /
- spatiotemporal characteristics
-
[1] 佚名.2021年中国移动源环境管理年报(摘录一)[J].环境保护,2021,49(增刊2):82-88. [2] 李雪松, 陆旸, 汪红驹,等.未来15年中国经济增长潜力与"十四五"时期经济社会发展主要目标及指标研究[J].中国工业经济, 2020(4):5-22. [3] LUO X, DONG L, DOU Y, et al. Analysis on spatial-temporal features of taxis’ emissions from big data informed travel patterns: a case of Shanghai, China[J]. Journal of Cleaner Production, 2017,142: 926-935. [4] KAN Z H, TANG L L, KWAN M P, et al. Estimating vehicle fuel consumption and emissions using GPS big data[J]. International Journal of Environmental Research and Public Health, 2018, 15(4): 566. [5] CHENG S F, LU F, PENG P. A high-resolution emissions inventory and its spatiotemporal pattern variations for heavy-duty diesel trucks in Beijing, China[J]. Journal of Cleaner Production, 2020, 250: 119445. [6] CHENG S F, ZHANG B B, PENG P, et al. Spatiotemporal evolution pattern detection for heavy-duty diesel truck emissions using trajectory mining: a case study of Tianjin, China[J]. Journal of Cleaner Production, 2020, 244: 118654. [7] CHENG S F, LU F, PENG P, et al. Emission characteristics and control scenario analysis of VOCs from heavy-duty diesel trucks[J]. Journal of Environmental Management, 2021, 293: 112915. [8] YU Q, ZHANG H R, LI W F, et al. Mobile phone GPS data in urban customized bus: dynamic line design and emission reduction potentials analysis[J]. Journal of Cleaner Production, 2020, 272: 122471. [9] ZHANG H R, SONG X, XIA T Q, et al. MaaS in bike-sharing: smart phone GPS data based layout optimization and emission reduction potential analysis[J]. Energy Procedia, 2018, 152: 649-654. [10] HULAGU S, CELIKOGLU H B. Comparative evaluation of macro and micro approaches to emission modeling using GPS data: a case study[J]. Transportation Research Procedia, 2021, 52: 629-636. [11] CHEN J Y, LI W J, ZHANG H R, et al. Mining urban sustainable performance: GPS data-based spatio-temporal analysis on on-road braking emission[J]. Journal of Cleaner Production, 2020, 270: 122489. [12] SHAN X H, CHEN X H, JIA W J, et al. Evaluating urban bus emission characteristics based on localized MOVES using sparse GPS data in Shanghai, China[J]. Sustainability, 2019, 11(10): 2936. [13] 张雅瑞,李光华,邓顺熙,等.渭南市道路移动源高分辨污染物排放清单及特征研究[J].环境科学学报,2022,42(2):332-340. [14] 邹泽耀,郑鑫程,徐崇敏,等.疫情背景下的福建省高速公路机动车污染物排放清单[J].环境科学学报,2022,42(5):119-128. [15] 刘佳泓,刘胜楠,刘茂辉,等.天津市环城某区小尺度VOCs排放清单及特征[J].环境工程,2020,38(8):188-194,200. [16] 殷子渊,张凯山.典型城市轻型汽油车尾气排放模式分析[J].环境工程,2021,39(4):64-71. [17] 曹靖原,刘成龙,邱雄辉,等.长治市高分辨率大气污染源排放清单研究[J].环境污染与防治,2022,44(5):618-624. [18] 赵大地,张宇,史旭荣,等.河南省1 km分辨率机动车大气污染物排放清单[J].环境污染与防治, 2022, 44(4):469-475,487. [19] 张雅瑞, 李光华, 邓顺熙, 等.渭南市道路移动源高分辨污染物排放清单及特征研究[J].环境科学学报, 2022, 42(2):332-340. [20] 张晴,赵丽娅,郭志威,等.2017—2020年武汉市大气污染物时空分布特征研究[J].环境工程,2023,41(2):82-90. [21] 周俊佳,梁娟珠.福州市区大气污染物质量浓度时空分布特征分析[J].环境工程,2017,35(2):89-93,173. [22] 肖凯,任学昌,陈仁华.嘉峪关市大气污染物传输特征与潜在源分析[J].环境工程,2021,39(9):92-101,109. [23] 云南省统计局.云南统计年鉴-2020[M].云南: 中国统计出版,2022. [24] 佚名. 道路运输车辆动态监督管理办法[N].中国交通报,2014-03-06. [25] LI T, JING P, LI L C, et al. Revealing the varying impact of urban built environment on online car-hailing travel in spatio-temporal dimension: an exploratory analysis in Chengdu, China[J]. Sustainability, 2019, 11(5): 1336. [26] 高强,张凤荔,王瑞锦,等.轨迹大数据:数据处理关键技术研究综述[J].软件学报,2017,28(4):959-992. [27] 张兰怡,胡喜生,邱荣祖.机动车尾气污染物排放模型研究综述[J].世界科技研究与发展,2017,39(4):355-362. [28] 高俊,胡辉,邢攀,等.基于MOBILE 6.2模型的武汉市机动车污染物排放特征分析[J].太原理工大学学报,2018,49(1):73-78.[29] 王燕军, 王鸣宇, 吉喆, 等.国外机动车排放模型综述研究[J].环境与可持续发展, 2020, 45(5):159-164. [30] 郝艳召, 邓顺熙, 邱兆文, 等.基于MOVES模型的西安市机动车排放清单研究[J].环境污染与防治, 2017, 39(3):227-231,235. [31] 朱庆功, 刘俊女, 赵笑春, 等.基于MOVES模型的北京市轻型汽油车蒸发排放总量评估[J].中国环境科学,2022,42(3):1066-1072. [32] 曹杨, 郭园园, 曹罡, 等.MOVES模型微观层次参数的深圳本土化研究[J].交通信息与安全, 2017, 35(2):100-108. [33] KAVIANIPOUR M, MOZAFARI H, KAMJOO E, et al. Effects of electric vehicle adoption for state-wide intercity trips on emission saving and energy consumption[J]. International Journal of Sustainable Transportation, 2022: 1-14. [34] 岳辉.西安市区大气污染物时空分布特征分析[J].科学技术与工程, 2018, 18(22):318-325. [35] 陈艺璇, 余涛.考虑大气污染物时空分布控制的多时间尺度协调多目标优化调度策略[J].中国电机工程学报, 2019, 39(8):2280-2296. [36] 孙世达, 金嘉欣, 吕建华, 等.基于精细化年均行驶里程建立机动车排放清单[J].中国环境科学, 2020, 40(5):2018-2029.
点击查看大图
计量
- 文章访问数: 190
- HTML全文浏览量: 14
- PDF下载量: 23
- 被引次数: 0